控制理论(社会学)
运动规划
机器人学
控制器(灌溉)
计算机科学
李雅普诺夫函数
职位(财务)
路径(计算)
功能(生物学)
控制Lyapunov函数
理论(学习稳定性)
控制工程
势场
控制(管理)
领域(数学)
数学优化
人工智能
工程类
Lyapunov重新设计
数学
机器人
物理
纯数学
混乱的
程序设计语言
机器学习
李雅普诺夫指数
经济
非线性系统
农学
生物
进化生物学
量子力学
财务
地球物理学
作者
Zhenhua Pan,Chengxi Zhang,Yuanqing Xia,Hao Xiong,Xiaodong Shao
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs
[Institute of Electrical and Electronics Engineers]
日期:2021-09-15
卷期号:69 (3): 1129-1133
被引量:168
标识
DOI:10.1109/tcsii.2021.3112787
摘要
Path planning and formation control are both challenging and critical issues in robotics, which involve computing an optimal path from the initial position to target while keeping the desired formation. This brief studies the path planning and formation control problem for multiple unmanned aerial vehicles (multi-UAVs) in 3-D constrained space. Considering the local minimum of artificial potential function (APF), an effective improved artificial potential function (IAPF) based path planning approach is proposed for the multi-UAV systems. By introducing a rotating potential field, the UAVs can escape from the common local minimum and oscillations efficiently. Afterwards, by using the leader-follower model, a formation controller based on potential function method is developed to ensure that the follower UAVs keep the desired angles and distances with the leader, and a Lyapunov function is designed to analyze the closed-system stability. Finally, simulation studies under different environmental constraints confirm the efficiency of the proposed approaches in addressing the path planning and formation control issues in 3-D space.
科研通智能强力驱动
Strongly Powered by AbleSci AI