有限元法
粘塑性
材料科学
粘弹性
应变率
断裂(地质)
复合材料
拉伤
生物力学
本构方程
结构工程
生物医学工程
工程类
解剖
物理
热力学
医学
作者
Ahmet Çetin,Durmuş Bircan
标识
DOI:10.1177/09544119211044560
摘要
Biomedical experimental studies such as pull-out (PO), screw loosening experience variability mechanical properties of fresh bone, legal procedures of cadaver bone samples and time-consuming problems. Finite Element Method (FEM) could overcome experimental problems in biomechanics. However, material modelling of bone is quite difficult, which has viscoelastic and viscoplastic properties. The study presents a bone material model which is constructed at the strain rates with the Johnson-Cook (JC) material model, one of the robust constitutive material models. The JC material constants of trabecular bone are determined by the curve fitting method at strain rates for the 3D PO finite element simulation, which defines the screw-bone interface relationship. The PO simulation is performed using the Abaqus/CAE software program. Bone fracture mechanisms are simulated with dynamic/explicit solutions during the PO phenomenon. The paper exposes whether the strain rate has effects on the PO performance. Moreover, simulation reveals the relationship between pedicle screw diameter and PO performance. The results obtained that the maximum pull-out force (POF) improves as both the screw diameter and the strain rate increase. For 5.5 mm diameter pedicle screw POFs were 487, 517 and 1708 N at strain rate 0.00015, 0.015 and 0.015 s-1, respectively. The FOFs obtained from the simulation of the other screw were 730, 802 and 2008 N at strain rates 0.00015, 0.0015 and 0.015, respectively. PO phenomenon was also simulated realistically in the finite element analysis (FEA).
科研通智能强力驱动
Strongly Powered by AbleSci AI