A united risk model of 11 immune‑related gene pairs and clinical stage for prediction of overall survival in clear cell renal cell carcinoma patients

队列 肿瘤科 比例危险模型 肾透明细胞癌 内科学 医学 单变量分析 阶段(地层学) 接收机工作特性 生存分析 肾细胞癌 多元分析 生物 古生物学
作者
Zijia Tao,Enchong Zhang,Lei Li,Jianyi Zheng,Yiqiao Zhao,Xiaonan Chen
出处
期刊:Bioengineered [Informa]
卷期号:12 (1): 4259-4277 被引量:6
标识
DOI:10.1080/21655979.2021.1955558
摘要

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Currently, we lack effective risk models for the prognosis of ccRCC patients. Given the significant role of cancer immunity in ccRCC, we aimed to establish a novel united risk model including clinical stage and immune-related gene pairs (IRGPs) to assess the prognosis. The gene expression profile and clinical data of ccRCC patients from The Cancer Genome Atlas and Arrayexpress were divided into training cohort (n = 381), validation cohort 1 (n = 156), and validation cohort 2 (n = 101). Through univariate Cox regression analysis and Least Absolute Shrinkage and Selection Operator analysis, 11 IRGPs were obtained. After further analysis, it was found that clinical stage could be an independent prognostic factor; hence, we used it to construct a united prognostic model with 11 IRGPs. Based on this model, patients were divided into high-risk and low-risk groups. In Kaplan-Meier analysis, a significant difference was observed in overall survival (OS) among all three cohorts (p < 0.001). The calibration curve revealed that the signature model is in high accordance with the observed values of each data cohort. The 1-year, 3-year, and 5-year receiver operating characteristic curves of each data cohort showed better performance than only IRGP signatures. The results of immune infiltration analysis revealed significantly (p < 0.05) higher abundance of macrophages M0, T follicular helper cells, and other tumor infiltrating cells. In summary, we successfully established a united prognostic risk model, which can effectively assess the OS of ccRCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一蓑烟雨任平生完成签到,获得积分0
刚刚
3秒前
慕青应助小王采纳,获得10
5秒前
传奇3应助雾语采纳,获得10
6秒前
田様应助Michaelialzm采纳,获得10
7秒前
温柔一刀完成签到,获得积分10
8秒前
8秒前
在水一方应助Bonnie采纳,获得10
12秒前
不配.应助欣慰的绮露采纳,获得20
12秒前
完美世界应助香蕉雨安采纳,获得10
12秒前
13秒前
14秒前
万能图书馆应助djx123采纳,获得10
14秒前
雾语完成签到,获得积分20
14秒前
15秒前
田様应助小王采纳,获得10
16秒前
19秒前
mairs完成签到,获得积分10
20秒前
20秒前
23秒前
23秒前
24秒前
24秒前
25秒前
噜咔完成签到 ,获得积分10
27秒前
28秒前
周政杰完成签到 ,获得积分10
28秒前
玉玉鼠完成签到,获得积分10
28秒前
科研通AI2S应助研友_nxw2xL采纳,获得30
28秒前
Bonnie发布了新的文献求助10
30秒前
30秒前
Sunflower发布了新的文献求助10
30秒前
彪悍的熊猫完成签到,获得积分10
32秒前
djx123发布了新的文献求助10
33秒前
35秒前
diu完成签到,获得积分10
35秒前
36秒前
yiyiji发布了新的文献求助30
37秒前
李健应助小王采纳,获得10
41秒前
43秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128936
求助须知:如何正确求助?哪些是违规求助? 2779683
关于积分的说明 7744521
捐赠科研通 2434916
什么是DOI,文献DOI怎么找? 1293769
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530