A united risk model of 11 immune‑related gene pairs and clinical stage for prediction of overall survival in clear cell renal cell carcinoma patients

队列 肿瘤科 比例危险模型 肾透明细胞癌 内科学 医学 单变量分析 阶段(地层学) 接收机工作特性 生存分析 肾细胞癌 多元分析 生物 古生物学
作者
Zijia Tao,Enchong Zhang,Lei Li,Jianyi Zheng,Yiqiao Zhao,Xiaonan Chen
出处
期刊:Bioengineered [Informa]
卷期号:12 (1): 4259-4277 被引量:6
标识
DOI:10.1080/21655979.2021.1955558
摘要

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer. Currently, we lack effective risk models for the prognosis of ccRCC patients. Given the significant role of cancer immunity in ccRCC, we aimed to establish a novel united risk model including clinical stage and immune-related gene pairs (IRGPs) to assess the prognosis. The gene expression profile and clinical data of ccRCC patients from The Cancer Genome Atlas and Arrayexpress were divided into training cohort (n = 381), validation cohort 1 (n = 156), and validation cohort 2 (n = 101). Through univariate Cox regression analysis and Least Absolute Shrinkage and Selection Operator analysis, 11 IRGPs were obtained. After further analysis, it was found that clinical stage could be an independent prognostic factor; hence, we used it to construct a united prognostic model with 11 IRGPs. Based on this model, patients were divided into high-risk and low-risk groups. In Kaplan-Meier analysis, a significant difference was observed in overall survival (OS) among all three cohorts (p < 0.001). The calibration curve revealed that the signature model is in high accordance with the observed values of each data cohort. The 1-year, 3-year, and 5-year receiver operating characteristic curves of each data cohort showed better performance than only IRGP signatures. The results of immune infiltration analysis revealed significantly (p < 0.05) higher abundance of macrophages M0, T follicular helper cells, and other tumor infiltrating cells. In summary, we successfully established a united prognostic risk model, which can effectively assess the OS of ccRCC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠寒荷完成签到,获得积分10
1秒前
fugui发布了新的文献求助10
1秒前
looking发布了新的文献求助10
2秒前
yan发布了新的文献求助10
4秒前
直率的代双完成签到,获得积分20
4秒前
苹果老三发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Flipped完成签到,获得积分10
4秒前
Chao123_发布了新的文献求助10
5秒前
orixero应助江洋大盗采纳,获得10
6秒前
judy发布了新的文献求助10
6秒前
核桃发布了新的文献求助10
7秒前
8秒前
共享精神应助Mia采纳,获得10
8秒前
8秒前
典雅煎蛋完成签到,获得积分10
9秒前
11秒前
Sulfur完成签到,获得积分10
11秒前
11秒前
王馨雨完成签到,获得积分10
12秒前
天天快乐应助Pettina采纳,获得10
12秒前
JerryZ发布了新的文献求助30
12秒前
ChenNN发布了新的文献求助10
13秒前
苹果老三完成签到,获得积分10
14秒前
隐形曼青应助hi采纳,获得10
14秒前
16秒前
爆米花应助He采纳,获得30
17秒前
Dean应助大聪明采纳,获得25
19秒前
20秒前
ding应助looking采纳,获得10
20秒前
lubaohong发布了新的文献求助10
20秒前
21秒前
852应助yayaha采纳,获得10
22秒前
852应助aixiaoming0503采纳,获得10
22秒前
23秒前
23秒前
机密塔发布了新的文献求助10
24秒前
含着朵白云完成签到 ,获得积分10
24秒前
慕青应助易玟采纳,获得10
24秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475655
求助须知:如何正确求助?哪些是违规求助? 4577327
关于积分的说明 14361496
捐赠科研通 4505243
什么是DOI,文献DOI怎么找? 2468525
邀请新用户注册赠送积分活动 1456156
关于科研通互助平台的介绍 1429890