诱导多能干细胞
除颤
缝隙连接
心脏电生理学
动作电位
心脏动作电位
心内膜
人的心脏
心脏病学
神经科学
心律失常
内科学
医学
生物
室性心动过速
心源性猝死
心肌细胞
细胞生物学
电生理学
心房颤动
复极
基因
胚胎干细胞
细胞内
生物化学
作者
Kenneth S. Williams,Timothy Liang,Stéphane Massé,Safwat T. Khan,Rupal Hatkar,Gordon Keller,Kumaraswamy Nanthakumar,Sara S. Nunes
标识
DOI:10.1016/j.actbio.2021.03.004
摘要
Cardiac arrhythmias impact over 12 million people globally, with an increasing incidence of acquired arrhythmias. Although animal models have shed light onto fundamental arrhythmic mechanisms, species-specific differences and ethical concerns remain. Current human models using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) either lack the higher order tissue organization of the heart or implement unreliable arrhythmia induction techniques. Our goal was to develop a robust model of acquired arrhythmia by disrupting cardiomyocyte cell-cell signaling – one of the hallmarks of complex arrhythmias. Human 3D microtissues were generated by seeding hydrogel-embedded hiPSC-CMs and cardiac fibroblasts into an established microwell system designed to enable active and passive force assessment. Cell-cell signaling was disrupted using methyl-beta cyclodextrin (MBCD), previously shown to disassemble cardiac gap junctions. We demonstrate that arrhythmias were progressive and present in all microtissues within 5 days of treatment. Arrhythmic tissues exhibited reduced conduction velocity, an increased number of distinct action potentials, and reduced action potential cycle length. Arrhythmic tissues also showed significant reduction in contractile force generation, increased beating frequency, and increased passive tension and collagen deposition, in line with fibrosis. A subset of tissues with more complex arrhythmias exhibited 3D spatial differences in action potential propagation. Pharmacological and electrical defibrillation was successful. Transcriptomic data indicated an enrichment of genes consistent with cardiac arrhythmias. MBCD removal reversed the arrhythmic phenotype, resulting in synchronicity despite not resolving fibrosis. This innovative & reliable human-relevant 3D acquired arrhythmia model shows potential for improving our understanding of arrhythmic action potential conduction and furthering therapeutic development. This work describes a 3D human model of cardiac arrhythmia-on-a-chip with high reproducibility, fidelity, and extensive functional applicability. To mimic in vivo conditions, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cardiac fibroblasts from healthy controls were combined in a biocompatible fibrin hydrogel and seeded between two deflectable polymeric rods. Using the innate functional properties of this 3D model as well as advanced optical imaging techniques we demonstrated dramatic changes in contraction rate, synchronicity, and electrophysiological conduction in arrhythmic tissues relative to controls. Taken together, these data demonstrate the distinctive potential of this new model for pathophysiological studies, and for arrhythmia drug testing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI