Rolling Bearing Sub-Health Recognition via Extreme Learning Machine Based on Deep Belief Network Optimized by Improved Fireworks

极限学习机 深信不疑网络 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 人工神经网络 算法 机器学习 生物化学 化学 基因
作者
Hao Luo,Chao He,Jianing Zhou,Li Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 42013-42026 被引量:18
标识
DOI:10.1109/access.2021.3064962
摘要

Rolling bearings, as the main components of the large industrial rotating equipment, usually work under complex conditions and are prone to break down. It can provide a certain theoretical basis for identifying the sub-health state of the industrial equipment by the analysis from the incipient weak signals. Thus, a sub-health recognition offline algorithm based on Refined Composite Multiscale Dispersion Entropy (RCMDE) and Deep Belief Network-Extreme Learning Machine (DBN-ELM) optimized by Improved Firework Algorithm (IFWA) is proposed. First of all, in light of the drawbacks that it is easy to fall into local optima and cross the boundary for exploding fireworks in Firework Algorithm (FWA), Cauchy mutation and adaptive dynamic explosion radius factor coefficient is introduced into IFWA. Secondly, Maximum Correlation Kurtosis Deconvolution (MCKD) optimized by the improved parameters is used to process the incipient vibration signals with nonlinearity, nonstationary, and IFWA is used to adaptively adjust to the period T and the filter length L in MCKD(IFWA-MCKD). Then, each sequence of signals is further extracted the feature-RCMDE to rich sample diversity. Finally, combining the powerful unsupervised learning capability from DBN and the generalization capability from ELM, DBN-ELM can be established. What's more, in order to avoid the interference of human on the parameters, IFWA is used to optimize the number of hidden nodes in DBN-ELM, and the IFWA-DBN-ELM is established. It shows that the algorithm has the higher sub-health recognition accuracy, better robustness and generalization, which has a better industrial application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助加一点荒谬采纳,获得10
1秒前
磊2024完成签到,获得积分10
1秒前
风清扬应助jiajia采纳,获得10
3秒前
随风完成签到,获得积分10
3秒前
Phi.Wang发布了新的文献求助10
3秒前
jctyp完成签到,获得积分10
4秒前
洁净斑马发布了新的文献求助10
4秒前
Jin完成签到,获得积分10
4秒前
9℃完成签到 ,获得积分10
5秒前
hansa完成签到,获得积分10
6秒前
Dan完成签到 ,获得积分10
7秒前
缥缈的背包完成签到,获得积分10
7秒前
沉甸甸完成签到,获得积分10
9秒前
火之高兴完成签到 ,获得积分10
9秒前
John完成签到 ,获得积分10
10秒前
DCOI完成签到 ,获得积分10
11秒前
gzf完成签到 ,获得积分10
13秒前
13秒前
杨杰超完成签到,获得积分10
13秒前
江十三完成签到,获得积分10
15秒前
223311完成签到,获得积分10
15秒前
17秒前
俭朴的发带完成签到,获得积分10
17秒前
18秒前
36456657应助RRR971028采纳,获得10
19秒前
哈哈哈完成签到,获得积分10
19秒前
细心天德完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
呼呼呼完成签到,获得积分10
22秒前
wangbw完成签到,获得积分10
23秒前
芒芒发paper完成签到 ,获得积分10
24秒前
愉快的真应助快乐小子采纳,获得20
26秒前
NexusExplorer应助miaomiao采纳,获得100
27秒前
28秒前
兴奋的若菱完成签到 ,获得积分10
28秒前
Gavin完成签到,获得积分10
29秒前
Legend_完成签到 ,获得积分10
30秒前
SYLH应助Lee采纳,获得10
30秒前
知性的颜完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027