Rolling Bearing Sub-Health Recognition via Extreme Learning Machine Based on Deep Belief Network Optimized by Improved Fireworks

极限学习机 深信不疑网络 人工智能 计算机科学 稳健性(进化) 模式识别(心理学) 人工神经网络 算法 机器学习 生物化学 化学 基因
作者
Hao Luo,Chao He,Jianing Zhou,Li Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 42013-42026 被引量:18
标识
DOI:10.1109/access.2021.3064962
摘要

Rolling bearings, as the main components of the large industrial rotating equipment, usually work under complex conditions and are prone to break down. It can provide a certain theoretical basis for identifying the sub-health state of the industrial equipment by the analysis from the incipient weak signals. Thus, a sub-health recognition offline algorithm based on Refined Composite Multiscale Dispersion Entropy (RCMDE) and Deep Belief Network-Extreme Learning Machine (DBN-ELM) optimized by Improved Firework Algorithm (IFWA) is proposed. First of all, in light of the drawbacks that it is easy to fall into local optima and cross the boundary for exploding fireworks in Firework Algorithm (FWA), Cauchy mutation and adaptive dynamic explosion radius factor coefficient is introduced into IFWA. Secondly, Maximum Correlation Kurtosis Deconvolution (MCKD) optimized by the improved parameters is used to process the incipient vibration signals with nonlinearity, nonstationary, and IFWA is used to adaptively adjust to the period T and the filter length L in MCKD(IFWA-MCKD). Then, each sequence of signals is further extracted the feature-RCMDE to rich sample diversity. Finally, combining the powerful unsupervised learning capability from DBN and the generalization capability from ELM, DBN-ELM can be established. What's more, in order to avoid the interference of human on the parameters, IFWA is used to optimize the number of hidden nodes in DBN-ELM, and the IFWA-DBN-ELM is established. It shows that the algorithm has the higher sub-health recognition accuracy, better robustness and generalization, which has a better industrial application prospect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明安筠发布了新的文献求助10
1秒前
Ava应助111采纳,获得10
1秒前
2秒前
zh完成签到,获得积分10
2秒前
香蕉静芙发布了新的文献求助10
2秒前
科研通AI5应助liuhuibin采纳,获得10
3秒前
M1ku发布了新的文献求助10
3秒前
3秒前
微昆界发布了新的文献求助10
4秒前
77完成签到,获得积分10
4秒前
七七完成签到,获得积分10
4秒前
4秒前
batmanrobin完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助50
5秒前
5秒前
J11发布了新的文献求助10
6秒前
6秒前
HF完成签到,获得积分10
6秒前
7秒前
Ayao完成签到,获得积分10
7秒前
qinghuixinyi完成签到,获得积分10
7秒前
8秒前
8秒前
冷酷丹翠完成签到 ,获得积分10
8秒前
1234567xjy完成签到,获得积分10
8秒前
烧炉工发布了新的文献求助10
8秒前
打打应助行简采纳,获得10
9秒前
左友铭完成签到 ,获得积分10
9秒前
M1ku完成签到,获得积分10
10秒前
伍子胥发布了新的文献求助10
10秒前
科目三应助Charon采纳,获得10
10秒前
10秒前
Zzzzzzz发布了新的文献求助10
10秒前
Leo_Sun完成签到,获得积分10
10秒前
11秒前
丘比特应助唐ZY123采纳,获得10
11秒前
所所应助沅沅采纳,获得10
11秒前
搞怪的听蓉完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602543
求助须知:如何正确求助?哪些是违规求助? 4011718
关于积分的说明 12420126
捐赠科研通 3691980
什么是DOI,文献DOI怎么找? 2035389
邀请新用户注册赠送积分活动 1068540
科研通“疑难数据库(出版商)”最低求助积分说明 953098