A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects

卷积神经网络 计算机科学 人工智能 数据科学
作者
Zewen Li,Fan Liu,Wenjie Yang,Shouheng Peng,Jun Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 6999-7019 被引量:1906
标识
DOI:10.1109/tnnls.2021.3084827
摘要

A convolutional neural network (CNN) is one of the most significant networks in the deep learning field. Since CNN made impressive achievements in many areas, including but not limited to computer vision and natural language processing, it attracted much attention from both industry and academia in the past few years. The existing reviews mainly focus on CNN's applications in different scenarios without considering CNN from a general perspective, and some novel ideas proposed recently are not covered. In this review, we aim to provide some novel ideas and prospects in this fast-growing field. Besides, not only 2-D convolution but also 1-D and multidimensional ones are involved. First, this review introduces the history of CNN. Second, we provide an overview of various convolutions. Third, some classic and advanced CNN models are introduced; especially those key points making them reach state-of-the-art results. Fourth, through experimental analysis, we draw some conclusions and provide several rules of thumb for functions and hyperparameter selection. Fifth, the applications of 1-D, 2-D, and multidimensional convolution are covered. Finally, some open issues and promising directions for CNN are discussed as guidelines for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ding_RJ完成签到,获得积分10
刚刚
乐观帅哥完成签到,获得积分10
1秒前
1秒前
簌簌完成签到,获得积分20
3秒前
3秒前
3秒前
in完成签到 ,获得积分10
3秒前
3秒前
3秒前
平安顺遂发布了新的文献求助10
4秒前
sunhaoran完成签到,获得积分10
4秒前
4秒前
叽里呱啦发布了新的文献求助10
5秒前
852应助晴朗采纳,获得10
5秒前
yzm788695发布了新的文献求助30
5秒前
舒心士萧发布了新的文献求助10
5秒前
6秒前
6秒前
斯文败类应助高大的秋白采纳,获得30
7秒前
吧啦吧啦发布了新的文献求助10
7秒前
8秒前
yaohan1121发布了新的文献求助10
8秒前
完美世界应助仁爱的雁芙采纳,获得10
8秒前
yihuifa完成签到 ,获得积分10
8秒前
赘婿应助炼金术士采纳,获得10
9秒前
sunhaoran发布了新的文献求助10
10秒前
10秒前
蟹黄堡完成签到,获得积分10
11秒前
华仔应助LouieHuang采纳,获得10
11秒前
风飞发布了新的文献求助10
11秒前
汉堡包应助如意的代真采纳,获得10
13秒前
古的古的应助sea采纳,获得10
13秒前
风趣青槐发布了新的文献求助10
14秒前
14秒前
天天快乐应助六味地黄丸采纳,获得10
14秒前
14秒前
H1998完成签到,获得积分10
15秒前
15秒前
15秒前
研友_Lkq4BZ完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153144
求助须知:如何正确求助?哪些是违规求助? 2804394
关于积分的说明 7859068
捐赠科研通 2462208
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629362
版权声明 601794