Random-forest based adjusting method for wind forecast of WRF model

均方误差 随机森林 数值天气预报 天气研究与预报模式 计算机科学 领域(数学) 气象学 特征(语言学) 天气预报 预测技巧 机器学习 统计 数学 物理 哲学 语言学 纯数学
作者
Anxi Wang,Longya Xu,Yang Li,Jianyong Xing,Xingrong Chen,Kewei Liu,Yong Liang,Zheng Zhou
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:155: 104842-104842 被引量:16
标识
DOI:10.1016/j.cageo.2021.104842
摘要

Nowadays, machine learning (ML) methods have gained much attention and have been applied in some important related applications in earth science field, including observation data mining, geoscience image recognition, remote sensing image classification and so on. These ML-based applications play important roles in our daily life. However, in meteorological and oceanographic forecast, numerical is still the most popular method. Although researchers have proposed some ML-based prediction methods to overcome the shortcomings of numerical weather forecast methods, the explainability for the forecast result of artificial intelligence (AI) technology is still not as good as numerical weather forecast methods. Therefore, in this paper, we propose a random forest based adjusting method, which introduces AI technology to correct wind prediction results of numerical model. The proposed adjusting method greatly improves the accuracy of forecast results. Furthermore, the physical meanings of parameters in the numerical model are retained in adjusting results. From experimental evaluations, it is obvious that the root mean square error (RMSE) of each feature is reduced greatly. In detail, the average RMSE of 10m wind decreased by more than 45%, and the average RMSE of sea level pressure decreased by more than 50%. It is worth noting that the improvement here is the average of all forecasts for whole region within 7 days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助yu采纳,获得10
1秒前
1秒前
wenwen发布了新的文献求助10
2秒前
殷勤的斓完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
华青ww发布了新的文献求助10
6秒前
jing216发布了新的文献求助10
6秒前
香蕉秋寒完成签到,获得积分10
7秒前
7秒前
现实的银耳汤完成签到,获得积分10
7秒前
panyu完成签到,获得积分10
9秒前
zhu完成签到 ,获得积分10
9秒前
爱笑的不评完成签到,获得积分20
9秒前
阳光盼山发布了新的文献求助10
9秒前
9秒前
赘婿应助wenwen采纳,获得10
10秒前
10秒前
健壮书包发布了新的文献求助10
10秒前
汉堡包应助秋子采纳,获得10
11秒前
爱啃大虾发布了新的文献求助10
11秒前
12秒前
MXene应助adsadsad采纳,获得20
12秒前
12秒前
ll2925203完成签到,获得积分10
12秒前
12秒前
13秒前
苗条的雪柳完成签到,获得积分10
15秒前
幸福大白发布了新的文献求助10
15秒前
16秒前
可爱的函函应助Skyrin采纳,获得10
17秒前
yu发布了新的文献求助10
18秒前
Kuripa发布了新的文献求助10
18秒前
科研通AI2S应助panyu采纳,获得10
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751185
求助须知:如何正确求助?哪些是违规求助? 3294677
关于积分的说明 10087191
捐赠科研通 3009852
什么是DOI,文献DOI怎么找? 1652939
邀请新用户注册赠送积分活动 787835
科研通“疑难数据库(出版商)”最低求助积分说明 752416