生物
进化生物学
转化(遗传学)
进化发育生物学
动物
认知科学
遗传学
基因
心理学
作者
Lars Bejder,Brian K. Hall
标识
DOI:10.1046/j.1525-142x.2002.02033.x
摘要
We address the developmental and evolutionary mechanisms underlying fore- and hindlimb development and progressive hindlimb reduction and skeletal loss in whales and evaluate whether the genetic, developmental, and evolutionary mechanisms thought to be responsible for limb loss in snakes "explain" loss of the hindlimbs in whales. Limb loss and concurrent morphological and physiological changes associated with the transition from land to water are discussed within the context of the current whale phylogeny. Emphasis is placed on fore- and hindlimb development, how the forelimbs transformed into flippers, and how the hindlimbs regressed, leaving either no elements or vestigial skeletal elements. Hindlimbs likely began to regress only after the ancestors of whales entered the aquatic environment: Hindlimb function was co-opted by the undulatory vertical axial locomotion made possible by the newly evolved caudal flukes. Loss of the hindlimbs was associated with elongation of the body during the transition from land to water. Limblessness in most snakes is also associated with adoption of a new (burrowing) lifestyle and was driven by developmental changes associated with elongation of the body. Parallels between adaptation to burrowing or to the aquatic environment reflect structural and functional changes associated with the switch to axial locomotion. Because they are more fully studied and to determine whether hindlimb loss in lineages that are not closely related could result from similar genetically controlled developmental pathways, we discuss developmental (cellular and genetic) processes that may have driven limb loss in snakes and leg-less lizards and compare these processes to the loss of hindlimbs in whales. In neither group does ontogenetic or phylogenetic limb reduction result from failure to initiate limb development. In both groups limb loss results from arrested development at the limb bud stage, as a result of inability to maintain necessary inductive tissue interactions and enhanced cell death over that seen in limbed tetrapods. An evolutionary change in Hox gene expression--as occurs in snakes--or in Hox gene regulation--as occurs in some limbless mutants--is unlikely to have initiated loss of the hindlimbs in cetaceans. Selective pressures acting on a wide range of developmental processes and adult traits other than the limbs are likely to have driven the loss of hindlimbs in whales.
科研通智能强力驱动
Strongly Powered by AbleSci AI