纳米
材料科学
纳米技术
光电流
纳米颗粒
纳米结构
电极
分解水
冠军
光电化学
光电子学
电化学
化学
光催化
复合材料
法学
催化作用
物理化学
生物化学
政治学
作者
Scott C. Warren,Kislon Voı̈tchovsky,Hen Dotan,Céline M. Leroy,Maurin Cornuz,Francesco Stellacci,C. Hébert,Avner Rothschild,Michaël Grätzel
出处
期刊:Nature Materials
[Nature Portfolio]
日期:2013-07-05
卷期号:12 (9): 842-849
被引量:537
摘要
Charge transport in nanoparticle-based materials underlies many emerging energy-conversion technologies, yet assessing the impact of nanometre-scale structure on charge transport across micrometre-scale distances remains a challenge. Here we develop an approach for correlating the spatial distribution of crystalline and current-carrying domains in entire nanoparticle aggregates. We apply this approach to nanoparticle-based α-Fe₂O₃ electrodes that are of interest in solar-to-hydrogen energy conversion. In correlating structure and charge transport with nanometre resolution across micrometre-scale distances, we have identified the existence of champion nanoparticle aggregates that are most responsible for the high photoelectrochemical activity of the present electrodes. Indeed, when electrodes are fabricated with a high proportion of these champion nanostructures, the electrodes achieve the highest photocurrent of any metal oxide photoanode for photoelectrochemical water-splitting under 100 mW cm(-2) air mass 1.5 global sunlight.
科研通智能强力驱动
Strongly Powered by AbleSci AI