Harvesting Singlet Fission for Solar Energy Conversion: One- versus Two-Electron Transfer from the Quantum Mechanical Superposition

四烯 单重态裂变 并五苯 化学 单重态 激子 轨道能级差 电子转移 有机半导体 原子物理学 裂变 橡胶 化学物理 光化学 激发态 物理 物理化学 核物理学 凝聚态物理 分子 电极 有机化学 薄膜晶体管 中子
作者
Wai‐Lun Chan,John R. Tritsch,Xiaoyang Zhu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:134 (44): 18295-18302 被引量:82
标识
DOI:10.1021/ja306271y
摘要

Singlet fission, the creation of two triplet excitons from one singlet exciton, is being explored to increase the efficiency of solar cells and photo detectors based on organic semiconductors, such as pentacene and tetracene. A key question is how to extract multiple electron-hole pairs from multiple excitons. Recent experiments in our laboratory on the pentacene/C(60) system (Chan, W.-L.; et al. Science 2011, 334, 1543-1547) provided preliminary evidence for the extraction of two electrons from the multiexciton (ME) state resulting from singlet fission. The efficiency of multielectron transfer is expected to depend critically on other dynamic processes available to the singlet (S(1)) and the ME, but little is known about these competing channels. Here we apply time-resolved photoemission spectroscopy to the tetracene/C(60) interface to probe one- and two-electron transfer from S(1) and ME states, respectively. Unlike ultrafast (~100 fs) singlet fission in pentacene where two-electron transfer from the multiexciton state resulting from singlet fission dominates, the relatively slow (~7 ps) singlet fission in tetracene allows both one- and two-electron transfer from the S(1) and the ME states that are in a quantum mechanical superposition. We show evidence for the formation of two distinct charge transfer states due to electron transfer from photoexcited tetracene to the lowest unoccupied molecular orbital (LUMO) and the LUMO+1 levels in C(60), respectively. Kinetic analysis shows that ~60% of the S(1) ⇔ ME quantum superposition transfers one electron through the S(1) state to C(60) while ~40% undergoes two-electron transfer through the ME state. We discuss design principles at donor/acceptor interfaces for optimal multiple carrier extraction from singlet fission for solar energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
charon发布了新的文献求助10
3秒前
慕青应助zjw采纳,获得10
3秒前
航航完成签到,获得积分20
5秒前
jiujiuwo完成签到,获得积分10
5秒前
Zhaao完成签到,获得积分10
7秒前
常乐长安完成签到,获得积分10
10秒前
研友_ZG4ml8完成签到 ,获得积分10
10秒前
无名老大应助科研通管家采纳,获得30
11秒前
11秒前
无名老大应助科研通管家采纳,获得30
11秒前
11秒前
毛豆爸爸应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
12秒前
英姑应助盖福鹤采纳,获得10
15秒前
caidan应助imchenyin采纳,获得10
16秒前
研究怎么亖完成签到,获得积分10
16秒前
worry发布了新的文献求助10
16秒前
科研通AI2S应助研究怎么亖采纳,获得10
18秒前
活力复天发布了新的文献求助10
19秒前
23秒前
24秒前
传奇3应助阳光的若南采纳,获得10
26秒前
27秒前
盖福鹤发布了新的文献求助10
27秒前
zjw发布了新的文献求助10
27秒前
30秒前
imchenyin完成签到,获得积分10
30秒前
CodeCraft应助自由的尔蓉采纳,获得10
31秒前
40873完成签到,获得积分10
34秒前
Fang发布了新的文献求助10
34秒前
36秒前
curtisness应助火蓝采纳,获得10
37秒前
38秒前
大力发布了新的文献求助10
40秒前
42秒前
卡农发布了新的文献求助10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359441
求助须知:如何正确求助?哪些是违规求助? 2982264
关于积分的说明 8702712
捐赠科研通 2663862
什么是DOI,文献DOI怎么找? 1458686
科研通“疑难数据库(出版商)”最低求助积分说明 675236
邀请新用户注册赠送积分活动 666300