Fungal Detection in Wheat Using Near-Infrared Hyperspectral Imaging

高光谱成像 主成分分析 线性判别分析 模式识别(心理学) 人工智能 二次分类器 数学 VNIR公司 分类器(UML) 生物 计算机科学
作者
Chandra B. Singh,Digvir S. Jayas,Jitendra Paliwal,N. D. G. White
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:50 (6): 2171-2176 被引量:82
标识
DOI:10.13031/2013.24077
摘要

Different species of fungi infect grain in the field and storage facilities. Contamination by fungi in grain is detected and quantified by traditional methods, such as microbial incubation and microscopic detection, which are subjective, labor intensive, and time consuming. An accurate and timely detection technique for fungal growth in grain is needed to prevent grain from spoiling and to reduce quality loss. In this study, the potential of near-infrared hyperspectral imaging to detect fungal infection in wheat was investigated. Wheat kernels infected with storage fungi, namely Penicillium spp., Aspergillus glaucus, and Aspergillus niger, were scanned using a hyperspectral imaging system, and a total of 20 image slices at evenly spaced wavelengths between 1000 to 1600 nm were acquired to form a hypercube. A multivariate image analysis (MIA) technique based on principal component analysis (PCA) was used to reduce the dimensionality of the image hypercubes. Two-class and four-class classification models were developed by applying k-means clustering and discriminant (linear, quadratic, and Mahalanobis) analyses. Two-class discriminant classification models gave maximum classification accuracy of 100%, and on average 97.8% infected kernels were correctly classified by the linear discriminant classifier. The four-class linear discriminant classifier correctly classified more than 95% of the kernels infected with Penicillium and 91.7% healthy kernels. However, the discriminant classifiers misclassified the kernels infected with A. niger and A. glaucus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助快乐马采纳,获得30
1秒前
zzuzjx发布了新的文献求助30
1秒前
Gzl完成签到,获得积分10
2秒前
3秒前
饮一杯为谁丶完成签到,获得积分10
3秒前
kyt完成签到 ,获得积分10
4秒前
5秒前
李云完成签到,获得积分10
5秒前
8秒前
yuqinghui98发布了新的文献求助10
8秒前
jerry发布了新的文献求助10
9秒前
10秒前
尔沁发布了新的文献求助10
10秒前
可爱的香菇完成签到 ,获得积分10
12秒前
雪碧完成签到,获得积分10
12秒前
13秒前
耍酷的翠曼完成签到,获得积分10
14秒前
15秒前
星辰大海应助jerry采纳,获得10
15秒前
xusuizi完成签到,获得积分10
15秒前
852应助小龙仔123采纳,获得10
16秒前
16秒前
Prozac发布了新的文献求助50
16秒前
提莫将军完成签到,获得积分10
18秒前
yuany发布了新的文献求助30
18秒前
找不完完成签到,获得积分10
19秒前
典雅碧空应助尔沁采纳,获得10
19秒前
兔兔完成签到 ,获得积分10
19秒前
愤怒的雨莲完成签到,获得积分10
21秒前
21秒前
勤奋的不斜完成签到 ,获得积分10
21秒前
21秒前
孤独丹秋完成签到,获得积分10
21秒前
22秒前
玥zty完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
25秒前
FOODHUA完成签到,获得积分10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296