Fungal Detection in Wheat Using Near-Infrared Hyperspectral Imaging

高光谱成像 主成分分析 线性判别分析 模式识别(心理学) 人工智能 二次分类器 数学 VNIR公司 分类器(UML) 生物 计算机科学
作者
Chandra B. Singh,Digvir S. Jayas,Jitendra Paliwal,N. D. G. White
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:50 (6): 2171-2176 被引量:82
标识
DOI:10.13031/2013.24077
摘要

Different species of fungi infect grain in the field and storage facilities. Contamination by fungi in grain is detected and quantified by traditional methods, such as microbial incubation and microscopic detection, which are subjective, labor intensive, and time consuming. An accurate and timely detection technique for fungal growth in grain is needed to prevent grain from spoiling and to reduce quality loss. In this study, the potential of near-infrared hyperspectral imaging to detect fungal infection in wheat was investigated. Wheat kernels infected with storage fungi, namely Penicillium spp., Aspergillus glaucus, and Aspergillus niger, were scanned using a hyperspectral imaging system, and a total of 20 image slices at evenly spaced wavelengths between 1000 to 1600 nm were acquired to form a hypercube. A multivariate image analysis (MIA) technique based on principal component analysis (PCA) was used to reduce the dimensionality of the image hypercubes. Two-class and four-class classification models were developed by applying k-means clustering and discriminant (linear, quadratic, and Mahalanobis) analyses. Two-class discriminant classification models gave maximum classification accuracy of 100%, and on average 97.8% infected kernels were correctly classified by the linear discriminant classifier. The four-class linear discriminant classifier correctly classified more than 95% of the kernels infected with Penicillium and 91.7% healthy kernels. However, the discriminant classifiers misclassified the kernels infected with A. niger and A. glaucus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋炒饭香喷喷儿完成签到,获得积分10
2秒前
Andy完成签到,获得积分10
4秒前
zhaogl完成签到,获得积分10
6秒前
8秒前
9秒前
希望天下0贩的0应助哲999采纳,获得10
9秒前
土豪的幻珊完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
修仙应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
修仙应助科研通管家采纳,获得10
11秒前
11秒前
李健的小迷弟应助阿紫采纳,获得10
12秒前
科研通AI2S应助落寞的无施采纳,获得10
12秒前
nowfitness完成签到,获得积分10
13秒前
木槿发布了新的文献求助10
14秒前
英俊的铭应助123成果采纳,获得10
14秒前
17秒前
小点点完成签到,获得积分10
20秒前
20秒前
22秒前
小点点发布了新的文献求助10
22秒前
HHHH完成签到,获得积分10
23秒前
平淡夏云发布了新的文献求助10
25秒前
30秒前
Doctor_Peng完成签到,获得积分10
32秒前
33秒前
Andy完成签到,获得积分10
34秒前
35秒前
无私的聪展完成签到,获得积分10
35秒前
36秒前
一条蛆完成签到,获得积分10
36秒前
38秒前
书生意气完成签到,获得积分10
38秒前
najibveto应助无私的聪展采纳,获得10
39秒前
好好学习完成签到,获得积分10
39秒前
关关小闲完成签到 ,获得积分10
41秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919