Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines

Pedotransfer函数 导水率 支持向量机 均方误差 土壤科学 土壤水分 人工神经网络 计算机科学 数学 机器学习 环境科学 统计
作者
Navin K. C. Twarakavi,Jiřı́ Šimůnek,Marcel G. Schaap
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:73 (5): 1443-1452 被引量:151
标识
DOI:10.2136/sssaj2008.0021
摘要

Modeling flow in variably saturated porous media requires reliable estimates of the hydraulic parameters describing the soil water retention and hydraulic conductivity. These soil hydraulic properties can be measured using a wide variety of laboratory and field methods. Frequently, this proves to be an arduous task because of the high spatial and temporal variability of soil properties. In the last decade, researchers have shown a keen interest in developing a class of indirect approaches, called pedotransfer functions (PTFs), to overcome this problem. Pedotransfer functions predict soil hydraulic parameters using easily obtainable soil properties such as textural information, bulk density and/or few retention points. In this paper, we use a new methodology called Support Vector Machines (SVMs) to derive a new set of PTFs. Support vector machines represent a pattern recognition approach where the overall prediction error and complexity of the SVM structure are minimized simultaneously. We used the same database that was utilized to develop ROSETTA to generate the SVM‐based PTFs. The performance of the SVM‐based PTFs was analyzed using the coefficient of determination, root mean square error (RMSE) and mean error (ME). All soil hydraulic parameters estimated using the SVM‐based PTFs showed improved confidence in the estimates when compared with the ROSETTA PTF program. Estimates of water contents and saturated hydraulic conductivities using the hydraulic parameters predicted by the SVM‐based PTFs mostly improved compared with those obtained using the artificial neural network (ANN)‐based ROSETTA. The RMSE for water contents decreased from 0.062 to 0.034 as more predictors were used, while the RMSE for the saturated hydraulic conductivity decreased from 0.716 to 0.552 (dimensionless log 10 units). Similarly, the bias in the water contents estimated using the SVM‐based PTF was reduced significantly compared with ROSETTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牧木发布了新的文献求助10
1秒前
领导范儿应助Mrsummer采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
英俊的铭应助李克杨采纳,获得10
1秒前
2秒前
3秒前
3秒前
小冯完成签到,获得积分10
4秒前
霸气绿草完成签到,获得积分10
4秒前
李健应助fqf采纳,获得10
5秒前
科研通AI5应助wyling采纳,获得10
6秒前
知更鸟发布了新的文献求助10
6秒前
7秒前
serier发布了新的文献求助10
9秒前
10秒前
安安的小板栗完成签到,获得积分10
11秒前
牧木完成签到,获得积分10
12秒前
领导范儿应助小陈爱科研采纳,获得10
13秒前
13秒前
15秒前
xiao发布了新的文献求助10
16秒前
jiang完成签到,获得积分10
16秒前
温暖的沛凝完成签到 ,获得积分10
17秒前
霸气绿草发布了新的文献求助10
18秒前
18秒前
zzzzzz应助机智的青烟采纳,获得30
20秒前
20秒前
糊糊发布了新的文献求助30
20秒前
xini完成签到,获得积分20
21秒前
22秒前
科研通AI6应助cugwzr采纳,获得10
23秒前
23秒前
韩爽完成签到,获得积分10
23秒前
gu123发布了新的文献求助10
23秒前
充电宝应助林小采纳,获得10
23秒前
23秒前
26秒前
27秒前
研友_VZG7GZ应助xiaolei001采纳,获得10
28秒前
慎ming发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368