Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines

Pedotransfer函数 导水率 支持向量机 均方误差 土壤科学 土壤水分 人工神经网络 计算机科学 数学 机器学习 环境科学 统计
作者
Navin K. C. Twarakavi,Jiřı́ Šimůnek,Marcel G. Schaap
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:73 (5): 1443-1452 被引量:151
标识
DOI:10.2136/sssaj2008.0021
摘要

Modeling flow in variably saturated porous media requires reliable estimates of the hydraulic parameters describing the soil water retention and hydraulic conductivity. These soil hydraulic properties can be measured using a wide variety of laboratory and field methods. Frequently, this proves to be an arduous task because of the high spatial and temporal variability of soil properties. In the last decade, researchers have shown a keen interest in developing a class of indirect approaches, called pedotransfer functions (PTFs), to overcome this problem. Pedotransfer functions predict soil hydraulic parameters using easily obtainable soil properties such as textural information, bulk density and/or few retention points. In this paper, we use a new methodology called Support Vector Machines (SVMs) to derive a new set of PTFs. Support vector machines represent a pattern recognition approach where the overall prediction error and complexity of the SVM structure are minimized simultaneously. We used the same database that was utilized to develop ROSETTA to generate the SVM‐based PTFs. The performance of the SVM‐based PTFs was analyzed using the coefficient of determination, root mean square error (RMSE) and mean error (ME). All soil hydraulic parameters estimated using the SVM‐based PTFs showed improved confidence in the estimates when compared with the ROSETTA PTF program. Estimates of water contents and saturated hydraulic conductivities using the hydraulic parameters predicted by the SVM‐based PTFs mostly improved compared with those obtained using the artificial neural network (ANN)‐based ROSETTA. The RMSE for water contents decreased from 0.062 to 0.034 as more predictors were used, while the RMSE for the saturated hydraulic conductivity decreased from 0.716 to 0.552 (dimensionless log 10 units). Similarly, the bias in the water contents estimated using the SVM‐based PTF was reduced significantly compared with ROSETTA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助缺粥采纳,获得10
刚刚
1秒前
1秒前
江月年发布了新的文献求助10
2秒前
2秒前
2秒前
彩虹云朵发布了新的文献求助10
4秒前
lucky完成签到,获得积分10
4秒前
Jasper应助十五采纳,获得10
5秒前
nns完成签到,获得积分10
6秒前
科研通AI5应助minmin采纳,获得10
6秒前
6秒前
大萝卜发布了新的文献求助10
7秒前
晶生发布了新的文献求助20
8秒前
墨羽发布了新的文献求助10
8秒前
烟花应助科研通管家采纳,获得30
9秒前
rosalieshi应助科研通管家采纳,获得30
9秒前
Hello应助科研通管家采纳,获得10
9秒前
caia应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
迟大猫应助科研通管家采纳,获得10
9秒前
qazx应助科研通管家采纳,获得10
9秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
迟大猫应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
无奈的菠萝完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
乐观的怀梦完成签到 ,获得积分10
11秒前
xyqy完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137