Development of Pedotransfer Functions for Estimation of Soil Hydraulic Parameters using Support Vector Machines

Pedotransfer函数 导水率 支持向量机 均方误差 土壤科学 土壤水分 人工神经网络 计算机科学 数学 机器学习 环境科学 统计
作者
Navin K. C. Twarakavi,Jiřı́ Šimůnek,Marcel G. Schaap
出处
期刊:Soil Science Society of America Journal [Wiley]
卷期号:73 (5): 1443-1452 被引量:151
标识
DOI:10.2136/sssaj2008.0021
摘要

Modeling flow in variably saturated porous media requires reliable estimates of the hydraulic parameters describing the soil water retention and hydraulic conductivity. These soil hydraulic properties can be measured using a wide variety of laboratory and field methods. Frequently, this proves to be an arduous task because of the high spatial and temporal variability of soil properties. In the last decade, researchers have shown a keen interest in developing a class of indirect approaches, called pedotransfer functions (PTFs), to overcome this problem. Pedotransfer functions predict soil hydraulic parameters using easily obtainable soil properties such as textural information, bulk density and/or few retention points. In this paper, we use a new methodology called Support Vector Machines (SVMs) to derive a new set of PTFs. Support vector machines represent a pattern recognition approach where the overall prediction error and complexity of the SVM structure are minimized simultaneously. We used the same database that was utilized to develop ROSETTA to generate the SVM‐based PTFs. The performance of the SVM‐based PTFs was analyzed using the coefficient of determination, root mean square error (RMSE) and mean error (ME). All soil hydraulic parameters estimated using the SVM‐based PTFs showed improved confidence in the estimates when compared with the ROSETTA PTF program. Estimates of water contents and saturated hydraulic conductivities using the hydraulic parameters predicted by the SVM‐based PTFs mostly improved compared with those obtained using the artificial neural network (ANN)‐based ROSETTA. The RMSE for water contents decreased from 0.062 to 0.034 as more predictors were used, while the RMSE for the saturated hydraulic conductivity decreased from 0.716 to 0.552 (dimensionless log 10 units). Similarly, the bias in the water contents estimated using the SVM‐based PTF was reduced significantly compared with ROSETTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
称心的又亦完成签到,获得积分20
1秒前
徐开心完成签到,获得积分10
1秒前
Yen发布了新的文献求助10
1秒前
狗宅完成签到,获得积分10
1秒前
三岁半完成签到 ,获得积分10
1秒前
研友_bZz0dL完成签到,获得积分10
1秒前
苏silence发布了新的文献求助10
1秒前
1秒前
BlingBling完成签到,获得积分10
1秒前
valiant发布了新的文献求助10
2秒前
如意雅山发布了新的文献求助100
2秒前
Mercy发布了新的文献求助10
2秒前
奶油橘子完成签到,获得积分10
2秒前
CQ发布了新的文献求助10
2秒前
3秒前
3秒前
deadman关注了科研通微信公众号
3秒前
社牛小柯完成签到,获得积分10
3秒前
3秒前
peace发布了新的文献求助10
3秒前
hq6045x完成签到,获得积分10
4秒前
乔七发布了新的文献求助10
4秒前
ding应助周围采纳,获得10
4秒前
珠珠完成签到,获得积分10
4秒前
jase发布了新的文献求助10
4秒前
感动归尘完成签到,获得积分10
5秒前
小吴完成签到,获得积分10
5秒前
科研通AI2S应助研友_08ozgZ采纳,获得10
6秒前
Jj完成签到,获得积分10
7秒前
整齐的惮完成签到 ,获得积分10
7秒前
phw1完成签到,获得积分10
7秒前
大大怪发布了新的文献求助10
7秒前
上官若男应助Atropa采纳,获得10
7秒前
嘉嘉完成签到,获得积分10
7秒前
冬瓜熊发布了新的文献求助10
7秒前
8秒前
嘚嘚发布了新的文献求助10
8秒前
8秒前
qiuxinhui应助研友_08ozgZ采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582