强化学习
计算机科学
单播
资源配置
分布式计算
架空(工程)
计算机网络
传输(电信)
延迟(音频)
电信
人工智能
网络数据包
操作系统
作者
Hao Ye,Geoffrey Ye Li,Biing‐Hwang Juang
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:3
标识
DOI:10.48550/arxiv.1805.07222
摘要
In this paper, we develop a decentralized resource allocation mechanism for vehicle-to-vehicle (V2V) communications based on deep reinforcement learning, which can be applied to both unicast and broadcast scenarios. According to the decentralized resource allocation mechanism, an autonomous agent', a V2V link or a vehicle, makes its decisions to find the optimal sub-band and power level for transmission without requiring or having to wait for global information. Since the proposed method is decentralized, it incurs only limited transmission overhead. From the simulation results, each agent can effectively learn to satisfy the stringent latency constraints on V2V links while minimizing the interference to vehicle-to-infrastructure (V2I) communications.
科研通智能强力驱动
Strongly Powered by AbleSci AI