高斯过程
计算机科学
李雅普诺夫函数
状态空间
概率逻辑
理论(学习稳定性)
机器学习
趋同(经济学)
平滑度
人工智能
非参数统计
数据建模
控制Lyapunov函数
高斯分布
Lyapunov重新设计
数学
李雅普诺夫指数
非线性系统
计量经济学
统计
物理
数学分析
数据库
经济
量子力学
经济增长
混乱的
作者
Jonas Umlauft,Armin Lederer,Sandra Hirche
标识
DOI:10.23919/acc.2017.7963165
摘要
Data-driven nonparametric models gain importance as control systems are increasingly applied in domains where classical system identification is difficult, e.g., because of the system's complexity, sparse training data or its probabilistic nature. Gaussian process state space models (GP-SSM) are a data-driven approach which requires only high-level prior knowledge like smoothness characteristics. Prior known properties like stability are also often available but rarely exploited during modeling. The enforcement of stability using control Lyapunov functions allows to incorporate this prior knowledge, but requires a data-driven Lyapunov function search. Therefore, we propose the use of Sum of Squares to enforce convergence of GP-SSMs and compare the performance to other approaches on a real-world handwriting motion dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI