Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair

脚手架 莲花 生物医学工程 3d打印 材料科学 生物 医学 植物
作者
Xiaoyu Han,Mingjie Sun,Bo Chen,Qimanguli Saiding,Junyue Zhang,Hong‐Liang Song,Lianfu Deng,Peng Wang,Weiming Gong,Wenguo Cui
出处
期刊:Bioactive Materials [Elsevier]
卷期号:6 (6): 1639-1652 被引量:98
标识
DOI:10.1016/j.bioactmat.2020.11.019
摘要

In the field of bone defect repair, 3D printed scaffolds have the characteristics of personalized customization and accurate internal structure. However, how to construct a well-structured vascular network quickly and effectively inside the scaffold is essential for bone repair after transplantation. Herein, inspired by the unique biological structure of “lotus seedpod”, hydrogel microspheres encapsulating deferoxamine (DFO) liposomes were prepared through microfluidic technology as “lotus seeds”, and skillfully combined with a three-dimensional (3D) printed bioceramic scaffold with biomimetic “lotus” biological structure which can internally grow blood vessels. In this composite scaffold system, DFO was effectively released by 36% in the first 6 h, which was conducive to promote the growth of blood vessels inside the scaffold quickly. In the following 7 days, the release rate of DFO reached 69%, which was fundamental in the formation of blood vessels inside the scaffold as well as osteogenic differentiation of bone mesenchymal stem cells (BMSCs). It was confirmed that the composite scaffold could significantly promote the human umbilical vein endothelial cells (HUVECs) to form the vascular morphology within 6 h in vitro. In vivo, the composite scaffold increased the expression of vascularization and osteogenic related proteins Hif1-α, CD31, OPN, and OCN in the rat femoral defect model, significantly cutting down the time of bone repair. To sum up, this “lotus seedpod” inspired porous bioceramic 3D printed scaffold with internal vascularization functionality has broad application prospects in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao完成签到,获得积分10
1秒前
Jasper应助冷傲凝琴采纳,获得10
1秒前
协和_子鱼完成签到,获得积分0
3秒前
7秒前
海茵完成签到,获得积分10
9秒前
囚徒完成签到,获得积分10
10秒前
冷傲凝琴发布了新的文献求助10
13秒前
Ampace小老弟完成签到 ,获得积分10
17秒前
犹豫的凡白完成签到 ,获得积分10
17秒前
Lee完成签到 ,获得积分10
19秒前
所所应助tivyg'lk采纳,获得10
20秒前
无为完成签到 ,获得积分10
20秒前
爆米花应助科研通管家采纳,获得30
24秒前
思源应助科研通管家采纳,获得10
24秒前
nini完成签到,获得积分10
24秒前
yuan完成签到,获得积分10
25秒前
27秒前
你在教我做事啊完成签到 ,获得积分10
30秒前
32秒前
樂酉完成签到 ,获得积分10
32秒前
俭朴的世界完成签到 ,获得积分10
33秒前
tivyg'lk发布了新的文献求助10
37秒前
从容映易完成签到,获得积分10
39秒前
于芋菊应助从容映易采纳,获得200
42秒前
Lenard Guma完成签到 ,获得积分10
45秒前
平常山河完成签到 ,获得积分10
46秒前
xcwy完成签到,获得积分10
49秒前
李李原上草完成签到 ,获得积分10
50秒前
沙袋完成签到,获得积分10
57秒前
明理的小蜜蜂完成签到 ,获得积分10
1分钟前
小二郎完成签到 ,获得积分10
1分钟前
huangqian完成签到,获得积分10
1分钟前
橘子完成签到 ,获得积分10
1分钟前
杏梨完成签到,获得积分10
1分钟前
1分钟前
安静成威完成签到 ,获得积分10
1分钟前
沙袋关注了科研通微信公众号
1分钟前
iShine完成签到 ,获得积分10
1分钟前
满城烟沙完成签到 ,获得积分10
1分钟前
xuaotian发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137058
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784326
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010