单线态氧
催化作用
复合数
铋
氧化还原
钴
化学
氧化物
浸出(土壤学)
激进的
电子转移
光化学
降级(电信)
氧气
无机化学
材料科学
复合材料
有机化学
土壤水分
环境科学
土壤科学
电信
计算机科学
作者
Tianhao Xi,Xiaodan Li,Qihui Zhang,Ning Liu,Shu Niu,Zhaojun Dong,Cong Lyu
标识
DOI:10.1007/s11783-020-1347-5
摘要
Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min−1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min−1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4−•, O2−•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.
科研通智能强力驱动
Strongly Powered by AbleSci AI