重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Context-Dependent Propagating-Based Video Recommendation in Multimodal Heterogeneous Information Networks

计算机科学 背景(考古学) 人机交互 多媒体 人工智能 生物 古生物学
作者
Lei Sang,Min Xu,Shengsheng Qian,Matt Martin,Peter Li,Xindong Wu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 2019-2032 被引量:42
标识
DOI:10.1109/tmm.2020.3007330
摘要

With the emergence of online social networks (OSNs), video recommendation has come to play a crucial role in mitigating the semantic gap between users and videos. Conventional approaches to video recommendation primarily focus on exploiting content features or simple user-video interactions to model the users' preferences. Although these methods have achieved promising results, they fail to model the complex video context interdependency, which is obscure/hidden in heterogeneous auxiliary data from OSNs. In this paper, we study the problem of video recommendation in Heterogeneous Information Networks (HINs) due to its excellence in characterizing heterogeneous and complex context information. We propose a Context-Dependent Propagating Recommendation network (CDPRec) to obtain accurate video embedding and capture global context cues among videos in HINs. The CDPRec can iteratively propagate the contexts of a video along links in a graph-structured HIN and explore multiple types of dependencies among the surrounding video nodes. Then, each video is represented as the composition of the multimodal content feature and global dependency structure information using an attention network. The learned video embedding with sequential based recommendation are jointly optimized for the final rating prediction. Experimental results on real-world YouTube video recommendation scenarios demonstrate the effectiveness of the proposed methods compared with strong baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助finish采纳,获得10
刚刚
zzww发布了新的文献求助10
刚刚
刚刚
伶俐草丛发布了新的文献求助10
1秒前
谦让香菇发布了新的文献求助10
1秒前
1秒前
虚幻小霸王完成签到,获得积分10
1秒前
1秒前
2秒前
打打应助十点差三分采纳,获得10
2秒前
威武惋庭完成签到,获得积分10
2秒前
高手发布了新的文献求助10
3秒前
Dong发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
朱良宇发布了新的文献求助10
4秒前
李健应助哇owao采纳,获得10
4秒前
科研通AI6应助何文鑫采纳,获得10
5秒前
丹牛完成签到,获得积分10
5秒前
5秒前
询鲤发布了新的文献求助10
5秒前
5秒前
5秒前
juzi完成签到,获得积分10
6秒前
yaunshiqi发布了新的文献求助10
6秒前
安在哉发布了新的文献求助10
6秒前
amwlsai完成签到,获得积分10
6秒前
7秒前
7秒前
混知完成签到,获得积分20
7秒前
7秒前
7秒前
打打应助布拉德玛拉唐采纳,获得20
8秒前
张多发布了新的文献求助10
8秒前
HKH发布了新的文献求助10
8秒前
8秒前
111发布了新的文献求助10
9秒前
菘蓝发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654