Chiller fault detection and diagnosis by knowledge transfer based on adaptive imbalanced processing

过采样 冷冻机 断层(地质) 计算机科学 支持向量机 工程类 人工智能 数据挖掘 电信 物理 地震学 热力学 地质学 带宽(计算) 渔业 生物
作者
Yuqiang Fan,Xiaoyu Cui,Hua Han,Hailong Lu
出处
期刊:Science and Technology for the Built Environment [Informa]
卷期号:26 (8): 1082-1099 被引量:21
标识
DOI:10.1080/23744731.2020.1757327
摘要

The existing fault detection and diagnosis (FDD) model of chillers requires considerable normal and fault data. The acquisition of these data is time-consuming and expensive, and the model is only suitable for special units, which makes it difficult to popularize FDD technology in the operation and management of chillers. At present, a 120-ton chiller has only a small amount of normal and fault data when compared with the abundant data of a 200-ton model of the same series. This study investigates the FDD model of a 120-ton chiller and considers similar characteristics of the refrigeration cycle of the same series of chillers. A training set can be created using the 200-ton prior-knowledge data and the 120-ton data. However, this training set is imbalanced, and the common imbalanced processing synthetic minority oversampling technique (SMOTE) synthesis mechanism has an overlap problem. This study adopts two adaptive imbalance processing technologies called the adaptive synthetic sampling approach (ADASYN) and borderline SMOTE (BSM) that can solve the imbalance problem and SMOTE oversampling overlap problem during knowledge transfer. A support vector machine FDD model with 100% to 400% oversampling ratios is established. The best model is ADASYN with less than 100% oversampling ratio, with a diagnostic accuracy rate of 94.33%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑宝坨完成签到,获得积分10
1秒前
1秒前
万能图书馆应助NPC采纳,获得10
3秒前
Lucas应助爱笑翠梅采纳,获得10
3秒前
星辰大海应助你好啊采纳,获得10
5秒前
多喝水我完成签到 ,获得积分10
6秒前
Jerry完成签到,获得积分10
10秒前
11秒前
123~!完成签到,获得积分10
13秒前
ASZXDW完成签到,获得积分10
14秒前
爱笑翠梅发布了新的文献求助10
14秒前
15秒前
喝奶茶睡不着完成签到,获得积分10
20秒前
852应助1huiqina采纳,获得30
21秒前
甜甜圈发布了新的文献求助10
21秒前
欧阳半仙完成签到,获得积分10
22秒前
jessie完成签到,获得积分10
23秒前
cy完成签到,获得积分10
25秒前
潇洒的擎苍完成签到,获得积分10
25秒前
爱笑翠梅完成签到,获得积分20
27秒前
王wangWANG完成签到,获得积分10
27秒前
忐忑的蛋糕完成签到,获得积分10
29秒前
工大机械完成签到,获得积分10
29秒前
科研小辣机完成签到 ,获得积分10
30秒前
高贵的思天完成签到,获得积分10
33秒前
00完成签到,获得积分10
33秒前
37秒前
37秒前
37秒前
朴实草莓完成签到,获得积分20
39秒前
39秒前
hnxxangel完成签到,获得积分10
40秒前
Leone发布了新的文献求助10
42秒前
时尚的雅柏完成签到 ,获得积分10
43秒前
FashionBoy应助火星上盼山采纳,获得10
45秒前
45秒前
Duolalala发布了新的文献求助10
47秒前
47秒前
48秒前
53秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137706
求助须知:如何正确求助?哪些是违规求助? 2788609
关于积分的说明 7787778
捐赠科研通 2444975
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043