结晶
材料科学
钙钛矿(结构)
化学工程
介孔材料
介观物理学
三元运算
纳米技术
化学
有机化学
计算机科学
量子力学
物理
工程类
催化作用
程序设计语言
作者
Qifei Wang,Wenhao Zhang,Zhihui Zhang,Shuang Liu,Zhenhua Wu,Yanjun Guan,Anyi Mei,Yaoguang Rong,Yue Hu,Hongwei Han
标识
DOI:10.1002/aenm.201903092
摘要
Abstract Controlling the crystallization of organic–inorganic hybrid perovskite is of vital importance to achieve high performing perovskite solar cells. The growth mechanism of perovskites has been intensively studied in devices with planar structures and traditional structures. However, for the printable mesoscopic perovskite solar cells, it is difficult to study the crystallization mechanism of perovskite owing to the complicated mesoporous structure. Here, a solvent evaporation controlled crystallization method to achieve ideal crystallization in the mesoscopic structure is provided. Combining results of scanning electron microscope and X‐ray diffraction, it is found that adjusting the evaporation rate of solvent can control the crystallization rate of perovskite and a model for the crystallization process during annealing in mesoporous structures is proposed. Finally, a homogeneous pore filling in the mesoscopic structure without any additives is successfully achieved and a stabilized power conversion efficiency of 16.26% using ternary‐cation perovskite absorber is realized. The findings will provide better understanding of perovskite crystallization in printable mesoscopic perovskite solar cells and pave the way for the commercialization of perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI