Data-driven learning of nonlocal physics from high-fidelity synthetic data

计算机科学 合成数据 算法 物理 统计物理学 忠诚 理论物理学 应用数学 数学 电信
作者
Huaiqian You,Yue Yu,Nathaniel Trask,Mamikon Gulian,Marta D’Elia
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:374: 113553-113553 被引量:60
标识
DOI:10.1016/j.cma.2020.113553
摘要

Abstract A key challenge to nonlocal models is the analytical complexity of deriving them from first principles, and frequently their use is justified a posteriori. In this work we extract nonlocal models from data, circumventing these challenges and providing data-driven justification for the resulting model form. Extracting data-driven surrogates is a major challenge for machine learning (ML) approaches, due to nonlinearities and lack of convexity — it is particularly challenging to extract surrogates which are provably well-posed and numerically stable. Our scheme not only yields a convex optimization problem, but also allows extraction of nonlocal models whose kernels may be partially negative while maintaining well-posedness even in small-data regimes. To achieve this, based on established nonlocal theory, we embed in our algorithm sufficient conditions on the non-positive part of the kernel that guarantee well-posedness of the learnt operator. These conditions are imposed as inequality constraints to meet the requisite conditions of the nonlocal theory. We demonstrate this workflow for a range of applications, including reproduction of manufactured nonlocal kernels; numerical homogenization of Darcy flow associated with a heterogeneous periodic microstructure; nonlocal approximation to high-order local transport phenomena; and approximation of globally supported fractional diffusion operators by truncated kernels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dududu完成签到,获得积分10
1秒前
1秒前
大椒完成签到 ,获得积分10
2秒前
2秒前
dididi发布了新的文献求助10
2秒前
Sacchride发布了新的文献求助10
3秒前
5秒前
6秒前
大个应助畅快芝麻采纳,获得10
6秒前
大模型应助nena采纳,获得10
6秒前
6秒前
7秒前
浮游应助简单的paper采纳,获得20
7秒前
我喜欢高浩洋完成签到,获得积分10
7秒前
cx完成签到,获得积分10
7秒前
共享精神应助dididi采纳,获得10
8秒前
11关闭了11文献求助
8秒前
8秒前
el完成签到 ,获得积分10
9秒前
10秒前
10秒前
AWESOME Ling发布了新的文献求助10
10秒前
别摆烂了发布了新的文献求助10
10秒前
小情绪应助科研通管家采纳,获得10
12秒前
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
Alex应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
小情绪应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
生动梦松应助科研通管家采纳,获得150
13秒前
一叶知秋应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355