亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitative image analysis for immunohistochemistry

计算机科学 数字化病理学 医学物理学 校准 人工智能 病理 医学 统计 数学
作者
Liron Pantanowitz
出处
期刊:Pathology [Elsevier]
卷期号:52: S11-S11
标识
DOI:10.1016/j.pathol.2020.01.080
摘要

Precision medicine currently demands precision diagnostics. As a result, anatomical pathology has transitioned from qualitative to more quantitative reporting of immunohistochemistry (IHC) results. The most widely employed quantitative image analysis (QIA) performed clinically by pathology laboratories is for breast biomarkers (ER, PR, HER2). Compared to manual assessment, QIA offers (1) better precision and accuracy of quantitative measurements, (2) standardisation and more reproducible results, especially for intermediate categories and complex scoring systems, and (3) automation which reduces the time consumption for pathologists, especially for performing mundane tasks like counting. However, QIA results can be affected by numerous variables. Pre-analytical variables include tissue handling, slide preparation, stain variation, and image acquisition (e.g., whole slide scanner differences). Analytical variation may be attributed to different image file formats and compression, tumour heterogeneity, analysing different regions of interest (e.g., hot spots), artifacts (e.g., tissue folds, air bubbles, crushed tissue, overlapping cells), and counting errors (e.g., cells between frames). Post-analytical variables include human interpretation error and result discrepancies. Recent QIA guidelines from the College of American Pathologists1 have helped address some of these concerns by providing recommendations for improving the reproducibility, precision, and accuracy of QIA for HER2 by IHC. These guidelines assist pathologists with appropriate algorithm selection, validation for clinical use, calibration using controls, training of laboratory personnel, reporting of results, performance monitoring, and retention requirements for image and computed test results. These guidelines can be extrapolated for similar QIA lab tests, and will hopefully enhance the adoption of QIA in pathology. Reference1.Bui MM, Riben MW, Allison KH, et al. Quantitative image analysis of human epidermal growth factor receptor 2 immunohistochemistry for breast cancer: Guideline From the College of American Pathologists. Arch Pathol Lab Med 2019; 143: 1180–95.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala完成签到,获得积分10
刚刚
miki完成签到 ,获得积分10
1秒前
1秒前
长小右完成签到,获得积分10
2秒前
科研通AI6应助顺利的沛萍采纳,获得10
10秒前
storm发布了新的文献求助10
13秒前
YH完成签到,获得积分10
13秒前
jcksonzhj完成签到,获得积分10
20秒前
牛乃唐完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
七叶花开完成签到 ,获得积分10
32秒前
Hello应助LukeLion采纳,获得10
32秒前
bc完成签到,获得积分10
32秒前
飘逸的念烟完成签到,获得积分20
36秒前
科研通AI6应助纯真的傲玉采纳,获得10
39秒前
Virginkiller1984完成签到 ,获得积分10
1分钟前
上官若男应助不高兴采纳,获得10
1分钟前
1分钟前
storm完成签到,获得积分10
1分钟前
1分钟前
cy发布了新的文献求助10
1分钟前
梅者如西发布了新的文献求助10
1分钟前
WebCasa完成签到,获得积分10
1分钟前
大模型应助cy采纳,获得10
1分钟前
梅者如西完成签到,获得积分10
1分钟前
Verity应助海绵宝宝采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Verity应助海绵宝宝采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
汉堡包应助海绵宝宝采纳,获得10
1分钟前
2分钟前
852应助海绵宝宝采纳,获得10
2分钟前
siyaya发布了新的文献求助10
2分钟前
2分钟前
2分钟前
领导范儿应助海绵宝宝采纳,获得10
2分钟前
酷波er应助易安采纳,获得10
2分钟前
科研通AI6应助海绵宝宝采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671074
求助须知:如何正确求助?哪些是违规求助? 4910134
关于积分的说明 15134001
捐赠科研通 4829837
什么是DOI,文献DOI怎么找? 2586486
邀请新用户注册赠送积分活动 1540101
关于科研通互助平台的介绍 1498301