IFLBC: On the Edge Intelligence Using Federated Learning Blockchain Network

计算机科学 云计算 人工智能 边缘计算 块链 深度学习 GSM演进的增强数据速率 机器学习 边缘设备 分析 大数据 数据分析 预测分析 数据科学 计算机安全 数据挖掘 操作系统
作者
Ronald Doku,Danda B. Rawat
标识
DOI:10.1109/bigdatasecurity-hpsc-ids49724.2020.00047
摘要

Lately there has been an increase in the number of Machine Learning (ML) and Artificial Intelligence (AI) applications ranging from recommendation systems to face to speech recognition. At the helm of the advent of deep learning is the proliferation of data from diverse data sources ranging from Internet-of-Things (IoT) devices to self-driving automobiles. Tapping into this unlimited reservoir of information presents the problem of finding quality data out of a myriad of irrelevant ones, which to this day, has been a significant issue in data science with a direct ramification of this being the inability to generate quality ML models for useful predictive analysis. Edge computing has been deemed a solution to some of issues such as privacy, security, data silos and latency, as it ventures to bring cloud computing services closer to end-nodes. A new form of edge computing known as edge-AI attempts to bring ML, AI, and predictive analytics services closer to the data source (end devices). In this paper, we investigate an approach to bring edge-AI to end-nodes through a shared machine learning model powered by the blockchain technology and a federated learning framework called iFLBC edge. Our approach addresses the issue of the scarcity of relevant data by devising a mechanism known as the Proof of Common Interest (PoCI) to sieve out relevant data from irrelevant ones. The relevant data is trained on a model, which is then aggregated along with other models to generate a shared model that is stored on the blockchain. The aggregated model is downloaded by members of the network which they can utilize for the provision of edge intelligence to end-users. This way, AI can be more ubiquitous as members of the iFLBC network can provide intelligence services to end-users.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热带蚂蚁完成签到 ,获得积分10
刚刚
Shuhe_Gong完成签到 ,获得积分10
9秒前
WHY完成签到 ,获得积分10
13秒前
MRJJJJ完成签到,获得积分10
27秒前
勤劳的颤完成签到 ,获得积分10
30秒前
huahua完成签到 ,获得积分10
35秒前
心无杂念完成签到 ,获得积分10
37秒前
air完成签到 ,获得积分10
39秒前
共享精神应助zzzkyt采纳,获得10
40秒前
自信的高山完成签到 ,获得积分10
49秒前
Gary完成签到 ,获得积分10
54秒前
我和你完成签到 ,获得积分10
1分钟前
onevip完成签到,获得积分10
1分钟前
大意的晓亦完成签到 ,获得积分10
1分钟前
lige完成签到 ,获得积分10
1分钟前
苻醉山完成签到 ,获得积分10
1分钟前
程伟为完成签到 ,获得积分10
1分钟前
lezard完成签到,获得积分10
1分钟前
小糖完成签到 ,获得积分10
2分钟前
爬得飞快的仲文博完成签到,获得积分10
2分钟前
昵称吧完成签到 ,获得积分10
2分钟前
范白容完成签到 ,获得积分10
2分钟前
方方完成签到 ,获得积分10
2分钟前
wangfaqing942完成签到 ,获得积分10
2分钟前
小芳芳完成签到 ,获得积分10
2分钟前
苗条的嘉熙完成签到 ,获得积分10
2分钟前
在水一方应助fangyifang采纳,获得10
2分钟前
小宋完成签到 ,获得积分10
2分钟前
3分钟前
even完成签到 ,获得积分10
3分钟前
轩少的完成签到 ,获得积分10
3分钟前
hhr完成签到 ,获得积分10
3分钟前
单小芫完成签到 ,获得积分10
3分钟前
344061512完成签到 ,获得积分10
4分钟前
欣喜的莆完成签到 ,获得积分10
4分钟前
Hello应助allrubbish采纳,获得10
4分钟前
yingzaifeixiang完成签到 ,获得积分10
4分钟前
4分钟前
allrubbish发布了新的文献求助10
4分钟前
liuliu完成签到 ,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371326
求助须知:如何正确求助?哪些是违规求助? 2989504
关于积分的说明 8735970
捐赠科研通 2672716
什么是DOI,文献DOI怎么找? 1464197
科研通“疑难数据库(出版商)”最低求助积分说明 677441
邀请新用户注册赠送积分活动 668732