亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot SAR Target Classification via Metalearning

NIST公司 初始化 计算机科学 自动目标识别 人工智能 合成孔径雷达 人工神经网络 模式识别(心理学) 杠杆(统计) 机器学习 目标捕获 计算机视觉 上下文图像分类 图像(数学) 语音识别 程序设计语言
作者
Kun Fu,Tengfei Zhang,Yue Zhang,Zhirui Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3058249
摘要

The state-of-the-art deep neural networks have made a great breakthrough in remote sensing image classification. However, the heavy dependence on large-scale data sets limits the application of the deep learning to synthetic aperture radar (SAR) automatic target recognition (ATR) field where the target sample set is generally small. In this work, a metalearning framework named MSAR, consisting of a metalearner and a base-learner, is proposed to solve the sample restriction problem, which can learn a good initialization as well as a proper update strategy. After training, MSAR can implement fast adaptation with a few training images on new tasks. To the best of our knowledge, this is the first study to solve a few-shot SAR target classification via metalearning. In particular, the few-task problem is defined by analyzing the effect of available training classes on the performance of metalearning models. In order to reduce the metalearning difficulties caused by the few-task problem, three transfer-learning methods are employed, which can leverage the prior knowledge from the pretraining phase. Besides, we design a hard task mining method for effective metalearning. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set, a specialized data set named NIST-SAR is devised to train and evaluate the proposed method. The experiments on NIST-SAR have shown that the proposed method yields better performances with the largest absolute improvements of 1.7% and 2.3% for 1-shot and 5-shot, respectively, over the next best, which indicates that the proposed method is promising and metalearning is a feasible solution for few-shot SAR ATR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
wearelulu完成签到,获得积分10
27秒前
Micheal完成签到 ,获得积分10
32秒前
49秒前
科研通AI6应助科研通管家采纳,获得10
49秒前
momo发布了新的文献求助30
55秒前
1分钟前
何何发布了新的文献求助10
1分钟前
可爱的函函应助何何采纳,获得10
1分钟前
momo完成签到,获得积分10
1分钟前
Lan完成签到 ,获得积分10
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
哈哈发布了新的文献求助10
2分钟前
jinsijia应助科研通管家采纳,获得10
2分钟前
哈哈发布了新的文献求助10
2分钟前
计划完成签到,获得积分10
3分钟前
魔幻诗兰完成签到,获得积分10
3分钟前
NexusExplorer应助科研小贩采纳,获得10
3分钟前
3分钟前
科研小贩发布了新的文献求助10
3分钟前
热情依白应助可爱寻芹采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分0
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
王吉萍完成签到 ,获得积分10
4分钟前
gcr完成签到 ,获得积分10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
Emilia发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
千里草完成签到,获得积分10
6分钟前
lezbj99完成签到,获得积分10
6分钟前
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
xxi发布了新的文献求助10
6分钟前
钟亦是终完成签到 ,获得积分10
7分钟前
哈哈发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681596
求助须知:如何正确求助?哪些是违规求助? 5010963
关于积分的说明 15175878
捐赠科研通 4841127
什么是DOI,文献DOI怎么找? 2594966
邀请新用户注册赠送积分活动 1547940
关于科研通互助平台的介绍 1505973