Few-Shot SAR Target Classification via Metalearning

NIST公司 初始化 计算机科学 自动目标识别 人工智能 合成孔径雷达 人工神经网络 模式识别(心理学) 杠杆(统计) 机器学习 目标捕获 计算机视觉 上下文图像分类 图像(数学) 语音识别 程序设计语言
作者
Kun Fu,Tengfei Zhang,Yue Zhang,Zhirui Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3058249
摘要

The state-of-the-art deep neural networks have made a great breakthrough in remote sensing image classification. However, the heavy dependence on large-scale data sets limits the application of the deep learning to synthetic aperture radar (SAR) automatic target recognition (ATR) field where the target sample set is generally small. In this work, a metalearning framework named MSAR, consisting of a metalearner and a base-learner, is proposed to solve the sample restriction problem, which can learn a good initialization as well as a proper update strategy. After training, MSAR can implement fast adaptation with a few training images on new tasks. To the best of our knowledge, this is the first study to solve a few-shot SAR target classification via metalearning. In particular, the few-task problem is defined by analyzing the effect of available training classes on the performance of metalearning models. In order to reduce the metalearning difficulties caused by the few-task problem, three transfer-learning methods are employed, which can leverage the prior knowledge from the pretraining phase. Besides, we design a hard task mining method for effective metalearning. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set, a specialized data set named NIST-SAR is devised to train and evaluate the proposed method. The experiments on NIST-SAR have shown that the proposed method yields better performances with the largest absolute improvements of 1.7% and 2.3% for 1-shot and 5-shot, respectively, over the next best, which indicates that the proposed method is promising and metalearning is a feasible solution for few-shot SAR ATR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yolo完成签到,获得积分10
刚刚
y1439938345发布了新的文献求助10
1秒前
1秒前
cloud发布了新的文献求助10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助30
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
彭于晏应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
4秒前
小蘑菇应助内向的跳跳糖采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
orixero应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348