Few-Shot SAR Target Classification via Metalearning

NIST公司 初始化 计算机科学 自动目标识别 人工智能 合成孔径雷达 人工神经网络 模式识别(心理学) 杠杆(统计) 机器学习 目标捕获 计算机视觉 上下文图像分类 图像(数学) 语音识别 程序设计语言
作者
Kun Fu,Tengfei Zhang,Yue Zhang,Zhirui Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3058249
摘要

The state-of-the-art deep neural networks have made a great breakthrough in remote sensing image classification. However, the heavy dependence on large-scale data sets limits the application of the deep learning to synthetic aperture radar (SAR) automatic target recognition (ATR) field where the target sample set is generally small. In this work, a metalearning framework named MSAR, consisting of a metalearner and a base-learner, is proposed to solve the sample restriction problem, which can learn a good initialization as well as a proper update strategy. After training, MSAR can implement fast adaptation with a few training images on new tasks. To the best of our knowledge, this is the first study to solve a few-shot SAR target classification via metalearning. In particular, the few-task problem is defined by analyzing the effect of available training classes on the performance of metalearning models. In order to reduce the metalearning difficulties caused by the few-task problem, three transfer-learning methods are employed, which can leverage the prior knowledge from the pretraining phase. Besides, we design a hard task mining method for effective metalearning. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set, a specialized data set named NIST-SAR is devised to train and evaluate the proposed method. The experiments on NIST-SAR have shown that the proposed method yields better performances with the largest absolute improvements of 1.7% and 2.3% for 1-shot and 5-shot, respectively, over the next best, which indicates that the proposed method is promising and metalearning is a feasible solution for few-shot SAR ATR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老肖应助www采纳,获得10
1秒前
HH发布了新的文献求助30
1秒前
香酥板栗完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
隐形曼青应助lj采纳,获得10
3秒前
真实的珠完成签到,获得积分10
4秒前
希希发布了新的文献求助10
5秒前
5秒前
蛋挞完成签到,获得积分10
5秒前
www完成签到,获得积分20
6秒前
青葱之松完成签到,获得积分10
7秒前
CodeCraft应助苗苗采纳,获得10
8秒前
8秒前
9秒前
万能图书馆应助立冬采纳,获得10
9秒前
11秒前
mogugu发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
kk发布了新的文献求助10
16秒前
鸽子发布了新的文献求助10
16秒前
科研通AI2S应助不想上班了采纳,获得10
16秒前
英姑应助loogn7采纳,获得10
17秒前
lj发布了新的文献求助10
17秒前
星辰大海应助乆乆乆乆采纳,获得10
18秒前
忧郁荔枝发布了新的文献求助10
18秒前
20秒前
20秒前
20秒前
天天快乐应助玖熙采纳,获得10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
尹春阳发布了新的文献求助10
24秒前
24秒前
24秒前
仁爱的戒指完成签到 ,获得积分10
25秒前
25秒前
25秒前
希望天下0贩的0应助火云采纳,获得10
26秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694056
求助须知:如何正确求助?哪些是违规求助? 5095485
关于积分的说明 15212871
捐赠科研通 4850756
什么是DOI,文献DOI怎么找? 2601983
邀请新用户注册赠送积分活动 1553785
关于科研通互助平台的介绍 1511770