亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot SAR Target Classification via Metalearning

NIST公司 初始化 计算机科学 自动目标识别 人工智能 合成孔径雷达 人工神经网络 模式识别(心理学) 杠杆(统计) 机器学习 目标捕获 计算机视觉 上下文图像分类 图像(数学) 语音识别 程序设计语言
作者
Kun Fu,Tengfei Zhang,Yue Zhang,Zhirui Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3058249
摘要

The state-of-the-art deep neural networks have made a great breakthrough in remote sensing image classification. However, the heavy dependence on large-scale data sets limits the application of the deep learning to synthetic aperture radar (SAR) automatic target recognition (ATR) field where the target sample set is generally small. In this work, a metalearning framework named MSAR, consisting of a metalearner and a base-learner, is proposed to solve the sample restriction problem, which can learn a good initialization as well as a proper update strategy. After training, MSAR can implement fast adaptation with a few training images on new tasks. To the best of our knowledge, this is the first study to solve a few-shot SAR target classification via metalearning. In particular, the few-task problem is defined by analyzing the effect of available training classes on the performance of metalearning models. In order to reduce the metalearning difficulties caused by the few-task problem, three transfer-learning methods are employed, which can leverage the prior knowledge from the pretraining phase. Besides, we design a hard task mining method for effective metalearning. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set, a specialized data set named NIST-SAR is devised to train and evaluate the proposed method. The experiments on NIST-SAR have shown that the proposed method yields better performances with the largest absolute improvements of 1.7% and 2.3% for 1-shot and 5-shot, respectively, over the next best, which indicates that the proposed method is promising and metalearning is a feasible solution for few-shot SAR ATR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研帽采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
lu2025完成签到,获得积分10
7秒前
依桉完成签到 ,获得积分10
7秒前
坦率的语芙完成签到,获得积分10
8秒前
9秒前
kcaj发布了新的文献求助10
11秒前
13秒前
yy发布了新的文献求助10
15秒前
18秒前
科研帽发布了新的文献求助10
19秒前
kcaj完成签到,获得积分10
24秒前
wan发布了新的文献求助10
24秒前
明轩完成签到,获得积分10
25秒前
29秒前
33秒前
谭文完成签到 ,获得积分10
37秒前
Hioa完成签到,获得积分10
44秒前
LUNE完成签到 ,获得积分10
48秒前
Naming完成签到 ,获得积分10
54秒前
hehe完成签到,获得积分20
1分钟前
1分钟前
传奇3应助hehe采纳,获得10
1分钟前
久顾南川完成签到 ,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
月亮夏的夏完成签到,获得积分20
1分钟前
NexusExplorer应助盛夏如花采纳,获得10
1分钟前
火辣蛤蟆完成签到,获得积分10
1分钟前
英俊的铭应助Bin_Liu采纳,获得10
1分钟前
1分钟前
佳佳发布了新的文献求助10
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
遥感小虫完成签到,获得积分10
1分钟前
1分钟前
1分钟前
artos发布了新的文献求助30
2分钟前
三石呦423发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634633
求助须知:如何正确求助?哪些是违规求助? 4731719
关于积分的说明 14988810
捐赠科研通 4792356
什么是DOI,文献DOI怎么找? 2559487
邀请新用户注册赠送积分活动 1519788
关于科研通互助平台的介绍 1479903