Few-Shot SAR Target Classification via Metalearning

NIST公司 初始化 计算机科学 自动目标识别 人工智能 合成孔径雷达 人工神经网络 模式识别(心理学) 杠杆(统计) 机器学习 目标捕获 计算机视觉 上下文图像分类 图像(数学) 语音识别 程序设计语言
作者
Kun Fu,Tengfei Zhang,Yue Zhang,Zhirui Wang,Xian Sun
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:75
标识
DOI:10.1109/tgrs.2021.3058249
摘要

The state-of-the-art deep neural networks have made a great breakthrough in remote sensing image classification. However, the heavy dependence on large-scale data sets limits the application of the deep learning to synthetic aperture radar (SAR) automatic target recognition (ATR) field where the target sample set is generally small. In this work, a metalearning framework named MSAR, consisting of a metalearner and a base-learner, is proposed to solve the sample restriction problem, which can learn a good initialization as well as a proper update strategy. After training, MSAR can implement fast adaptation with a few training images on new tasks. To the best of our knowledge, this is the first study to solve a few-shot SAR target classification via metalearning. In particular, the few-task problem is defined by analyzing the effect of available training classes on the performance of metalearning models. In order to reduce the metalearning difficulties caused by the few-task problem, three transfer-learning methods are employed, which can leverage the prior knowledge from the pretraining phase. Besides, we design a hard task mining method for effective metalearning. Based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set, a specialized data set named NIST-SAR is devised to train and evaluate the proposed method. The experiments on NIST-SAR have shown that the proposed method yields better performances with the largest absolute improvements of 1.7% and 2.3% for 1-shot and 5-shot, respectively, over the next best, which indicates that the proposed method is promising and metalearning is a feasible solution for few-shot SAR ATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔卡发布了新的文献求助10
2秒前
flypipidan完成签到,获得积分10
3秒前
3秒前
3秒前
洞悉发布了新的文献求助10
3秒前
害羞的乌完成签到 ,获得积分10
4秒前
虚心沂完成签到,获得积分10
4秒前
三金发布了新的文献求助10
5秒前
pluto应助徐锋采纳,获得10
6秒前
bkagyin应助wz采纳,获得10
6秒前
春风完成签到,获得积分10
7秒前
辛勤太阳完成签到,获得积分10
7秒前
张起灵完成签到 ,获得积分10
8秒前
快乐难敌发布了新的文献求助10
8秒前
科研新秀z完成签到,获得积分10
8秒前
852应助houbinghua采纳,获得10
9秒前
10秒前
小柚完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
Ava应助ZZY采纳,获得10
11秒前
希望天下0贩的0应助fake采纳,获得10
11秒前
cc完成签到,获得积分20
12秒前
zzmm完成签到,获得积分10
12秒前
科鲁完成签到,获得积分10
12秒前
酷波er应助魔卡采纳,获得10
12秒前
akscns发布了新的文献求助10
14秒前
酷波er应助Dallas采纳,获得10
14秒前
xixi完成签到,获得积分20
14秒前
在水一方应助huazi采纳,获得10
14秒前
努力学习发布了新的文献求助10
14秒前
Hashou发布了新的文献求助10
15秒前
15秒前
Jasper应助大鲨鱼采纳,获得10
16秒前
Sharif发布了新的文献求助10
16秒前
16秒前
小刘完成签到,获得积分10
16秒前
17秒前
18秒前
周周周周周周完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602994
求助须知:如何正确求助?哪些是违规求助? 4011921
关于积分的说明 12421025
捐赠科研通 3692263
什么是DOI,文献DOI怎么找? 2035522
邀请新用户注册赠送积分活动 1068704
科研通“疑难数据库(出版商)”最低求助积分说明 953232