亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-Shot Object Detection on Remote Sensing Images

计算机科学 目标检测 人工智能 水准点(测量) 特征(语言学) 最小边界框 对象(语法) 模式识别(心理学) 特征提取 计算机视觉 深度学习 一般化 代表(政治) 卷积神经网络 图像(数学) 地理 法学 哲学 大地测量学 数学分析 政治 语言学 数学 政治学
作者
Li Xiang,Jingyu Deng,Yi Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:88
标识
DOI:10.1109/tgrs.2021.3051383
摘要

In this paper, we deal with the problem of object detection on remote sensing images. Previous methods have developed numerous deep CNN-based methods for object detection on remote sensing images and the report remarkable achievements in detection performance and efficiency. However, current CNN-based methods mostly require a large number of annotated samples to train deep neural networks and tend to have limited generalization abilities for unseen object categories. In this paper, we introduce a few-shot learning-based method for object detection on remote sensing images where only a few annotated samples are provided for the unseen object categories. More specifically, our model contains three main components: a meta feature extractor that learns to extract feature representations from input images, a reweighting module that learn to adaptively assign different weights for each feature representation from the support images, and a bounding box prediction module that carries out object detection on the reweighted feature maps. We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework. Experiments on two benchmark datasets demonstrate that with only a few annotated samples our model can still achieve a satisfying detection performance on remote sensing images and the performance of our model is significantly better than the well-established baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
StH完成签到,获得积分20
16秒前
kk完成签到 ,获得积分10
25秒前
38秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
田様应助海饼干采纳,获得10
1分钟前
1分钟前
1分钟前
海饼干发布了新的文献求助10
1分钟前
1分钟前
1分钟前
师兄的结果复现不出完成签到,获得积分10
1分钟前
善学以致用应助曾泰平采纳,获得10
1分钟前
2分钟前
曾泰平发布了新的文献求助10
2分钟前
黑翅鸢完成签到 ,获得积分10
2分钟前
斯文败类应助归海亦云采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助50
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995482
求助须知:如何正确求助?哪些是违规求助? 4242486
关于积分的说明 13216168
捐赠科研通 4038471
什么是DOI,文献DOI怎么找? 2209726
邀请新用户注册赠送积分活动 1220507
关于科研通互助平台的介绍 1139443