亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
JamesPei应助满意的世界采纳,获得10
17秒前
43秒前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
13656479046完成签到,获得积分10
1分钟前
13656479046发布了新的文献求助30
1分钟前
贪玩的万仇完成签到 ,获得积分10
1分钟前
共享精神应助求学采纳,获得10
1分钟前
求学完成签到,获得积分10
1分钟前
syalonyui完成签到,获得积分10
2分钟前
完美世界应助明理珩采纳,获得10
2分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
3分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
3分钟前
明理珩发布了新的文献求助10
3分钟前
彭于晏应助明理珩采纳,获得10
3分钟前
步念发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
彩色不评完成签到,获得积分10
3分钟前
明理珩发布了新的文献求助10
3分钟前
彩色不评发布了新的文献求助10
3分钟前
3分钟前
3分钟前
上官若男应助明理珩采纳,获得80
3分钟前
传奇3应助明理珩采纳,获得30
3分钟前
3分钟前
4分钟前
超帅的开山完成签到 ,获得积分10
4分钟前
4分钟前
明理珩发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603317
求助须知:如何正确求助?哪些是违规求助? 4688370
关于积分的说明 14853492
捐赠科研通 4690132
什么是DOI,文献DOI怎么找? 2540639
邀请新用户注册赠送积分活动 1507001
关于科研通互助平台的介绍 1471609