Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮绿蕊完成签到,获得积分10
刚刚
刚刚
1秒前
沉静傥完成签到,获得积分10
2秒前
cloud发布了新的文献求助10
2秒前
懒洋洋发布了新的文献求助10
2秒前
3秒前
王晗关注了科研通微信公众号
3秒前
充电宝应助姜且采纳,获得10
3秒前
可爱馒头发布了新的文献求助10
4秒前
5秒前
桃子不是涛完成签到,获得积分10
7秒前
8秒前
结实青文完成签到 ,获得积分10
8秒前
9秒前
淳之风完成签到,获得积分10
9秒前
小雒雒完成签到,获得积分10
10秒前
小木完成签到,获得积分10
11秒前
12秒前
科研通AI6应助顺利兰采纳,获得10
12秒前
13秒前
13秒前
woxbin发布了新的文献求助10
14秒前
曾经的初雪完成签到 ,获得积分10
14秒前
14秒前
15秒前
李健应助清江鱼采纳,获得10
15秒前
老实的大白菜真实的钥匙完成签到,获得积分10
15秒前
慕念完成签到,获得积分10
15秒前
JamesPei应助会撒娇的金毛采纳,获得30
16秒前
积极洋葱发布了新的文献求助10
16秒前
迟迟发布了新的文献求助10
16秒前
汉堡包应助song采纳,获得10
17秒前
17秒前
21秒前
22秒前
luxx发布了新的文献求助10
23秒前
Jeff关注了科研通微信公众号
25秒前
26秒前
xixi应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536760
求助须知:如何正确求助?哪些是违规求助? 4624404
关于积分的说明 14591829
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2501995
邀请新用户注册赠送积分活动 1480743
关于科研通互助平台的介绍 1451989