Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助娜娜呀采纳,获得10
刚刚
刚刚
开心如冬发布了新的文献求助10
刚刚
1秒前
1秒前
黄晟钊完成签到,获得积分10
1秒前
wbgwudi完成签到,获得积分10
2秒前
科研科完成签到,获得积分10
2秒前
3秒前
酷炫翠桃应助王不王采纳,获得10
3秒前
3秒前
苹果发布了新的文献求助10
3秒前
追寻的秋玲完成签到,获得积分10
4秒前
易槐完成签到,获得积分10
4秒前
曦曦发布了新的文献求助10
4秒前
无语的从云完成签到,获得积分10
5秒前
开心如冬完成签到,获得积分10
6秒前
桑葚完成签到,获得积分10
6秒前
ZYC007完成签到,获得积分10
6秒前
6秒前
Emily完成签到,获得积分10
7秒前
慕青应助xy采纳,获得10
7秒前
英俊的铭应助dahuihui采纳,获得10
7秒前
顺心紫南完成签到,获得积分10
7秒前
menghongmei发布了新的文献求助10
8秒前
偷乐发布了新的文献求助10
8秒前
李健应助无语的笑珊采纳,获得10
8秒前
8秒前
有机分子笼完成签到,获得积分10
9秒前
77777发布了新的文献求助10
9秒前
yjzzz完成签到,获得积分10
9秒前
fly完成签到,获得积分10
9秒前
大模型应助Dearjw1655采纳,获得10
10秒前
10秒前
10秒前
yueyue完成签到,获得积分10
10秒前
莫西莫西发布了新的文献求助10
10秒前
11秒前
ColinWine完成签到,获得积分10
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582