亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 气相色谱-质谱法 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:31
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初雪平寒发布了新的文献求助10
5秒前
初雪平寒完成签到,获得积分10
20秒前
感动的醉波完成签到,获得积分10
21秒前
will214发布了新的文献求助10
32秒前
茜你亦首歌完成签到 ,获得积分10
33秒前
斯文败类应助科研通管家采纳,获得10
35秒前
orixero应助科研通管家采纳,获得10
35秒前
王柯文完成签到,获得积分10
1分钟前
自由的梦露完成签到 ,获得积分10
1分钟前
无极2023完成签到 ,获得积分10
1分钟前
在水一方应助kakakaku采纳,获得10
2分钟前
2分钟前
Langsam发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
kakakaku发布了新的文献求助10
3分钟前
ShowMaker应助风中绝悟采纳,获得20
3分钟前
石鑫发布了新的文献求助20
3分钟前
snah完成签到 ,获得积分10
3分钟前
香蕉觅云应助石鑫采纳,获得10
3分钟前
美丽觅夏完成签到 ,获得积分10
3分钟前
Mistletoe完成签到 ,获得积分10
3分钟前
赘婿应助xu采纳,获得10
4分钟前
吃碗大米饭完成签到,获得积分10
4分钟前
可爱的函函应助kirirto采纳,获得10
4分钟前
4分钟前
xj完成签到,获得积分10
4分钟前
Mipe完成签到,获得积分10
4分钟前
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
ding应助陳.采纳,获得10
4分钟前
健忘捕完成签到 ,获得积分10
4分钟前
4分钟前
陳.发布了新的文献求助10
4分钟前
Milton_z完成签到 ,获得积分10
4分钟前
5分钟前
liwang9301发布了新的文献求助10
5分钟前
石鑫发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845964
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748