Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
慕青应助Erin采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
nini发布了新的文献求助10
3秒前
怡然友安完成签到,获得积分20
3秒前
5秒前
专业中药人完成签到,获得积分10
5秒前
Snake发布了新的文献求助10
7秒前
呜呼啦呼完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
海蓝之心完成签到,获得积分10
8秒前
嘻嘻完成签到,获得积分10
8秒前
9秒前
9秒前
bkagyin应助收手吧大哥采纳,获得10
10秒前
如意代秋发布了新的文献求助10
10秒前
任我行发布了新的文献求助10
11秒前
牛奶蜂蜜猫眼石完成签到,获得积分10
11秒前
11秒前
yeeeeees完成签到,获得积分10
12秒前
turui发布了新的文献求助30
12秒前
sys549发布了新的文献求助10
12秒前
食用菌完成签到,获得积分10
13秒前
水水母发布了新的文献求助30
14秒前
隐形曼青应助mjn404采纳,获得10
14秒前
14秒前
15秒前
房山芙完成签到,获得积分10
15秒前
轻语完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
元友容完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
小米发布了新的文献求助10
20秒前
赘婿应助山260采纳,获得30
21秒前
Xuech完成签到,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749371
求助须知:如何正确求助?哪些是违规求助? 5458153
关于积分的说明 15363380
捐赠科研通 4888812
什么是DOI,文献DOI怎么找? 2628705
邀请新用户注册赠送积分活动 1576998
关于科研通互助平台的介绍 1533722