已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菲1208完成签到,获得积分10
刚刚
1秒前
哇呀呀完成签到 ,获得积分10
7秒前
绮烟完成签到 ,获得积分10
10秒前
顾子墨完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
氟锑酸完成签到 ,获得积分10
15秒前
sora98完成签到 ,获得积分10
16秒前
16秒前
喜悦的小土豆完成签到 ,获得积分10
17秒前
18秒前
浮游应助仙女爱科研采纳,获得10
18秒前
19秒前
mr_wang发布了新的文献求助10
19秒前
炙热初柔发布了新的文献求助10
21秒前
灰灰完成签到 ,获得积分10
23秒前
川川完成签到,获得积分20
23秒前
Niki完成签到 ,获得积分10
24秒前
miyya发布了新的文献求助10
24秒前
贪玩的谷芹完成签到 ,获得积分10
26秒前
27秒前
jynihao完成签到,获得积分10
28秒前
温暖发布了新的文献求助10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
大个应助科研通管家采纳,获得10
31秒前
小蘑菇应助科研通管家采纳,获得10
31秒前
GingerF应助科研通管家采纳,获得60
31秒前
上官若男应助科研通管家采纳,获得10
32秒前
32秒前
无花果应助ROC采纳,获得10
34秒前
yuyu完成签到,获得积分20
35秒前
jynihao发布了新的文献求助10
38秒前
鸭鸭完成签到 ,获得积分10
38秒前
qianyixingchen完成签到 ,获得积分10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655