Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning—An Alternative Authentication Approach

主成分分析 化学 柑橘×冬青 橙色(颜色) 线性判别分析 支持向量机 质谱法 计算机科学 橙汁 模式识别(心理学) 人工智能 色谱法 食品科学
作者
Rebecca Brendel,Sebastian Schwolow,Sascha Rohn,Philipp Weller
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:69 (5): 1727-1738 被引量:34
标识
DOI:10.1021/acs.jafc.0c07447
摘要

A prototype dual-detection headspace–gas chromatography–mass spectrometry–ion mobility spectrometry (HS-GC-MS-IMS) system was used for the analysis of the volatile profile of 47 Citrus juices including grapefruit, blood orange, and common sweet orange juices without requiring any sample pretreatment. Next to reduced measurement times, substance identification could be improved substantially in case of co-elution by considering the characteristic drift times and m/z ratios obtained by IMS and MS. To discriminate the volatile profiles of the different juice types, extensive data analysis was performed with both datasets, respectively. By principal component analysis (PCA), a distinct separation between grapefruit and orange juices was observed. While in the IMS data grapefruit juices not from fruit juice concentrate could be separated from grapefruit juices reconstituted from fruit juice concentrate, in the MS data, the blood orange juices could be differentiated from the orange juices. This observation leads to the assumption that the IMS and MS data contain different information about the composition of the volatile profile. Subsequently, linear discriminant analysis (LDA), support vector machines (SVM), and the k-nearest-neighbor (kNN) algorithm were applied to the PCA data as supervised classification methods. Best results were obtained by LDA after repeated cross-validation for both datasets, with an overall classification and prediction ability of 96.9 and 91.5% for the IMS data and 94.5 and 87.9% for the MS data, respectively, which confirms the results obtained by PCA. Additional data fusion could not generally improve the model prediction ability compared to the single data, but rather for certain juice classes. Consequently, depending on the juice class, the most suitable dataset should be considered for the prediction of the class membership. This volatilomic approach based on the dual detection by HS-GC-MS-IMS and machine learning tools represent a simple and promising alternative for future authenticity control of Citrus juices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
1秒前
今后应助333采纳,获得10
2秒前
pu发布了新的文献求助10
3秒前
Akim应助梓榆采纳,获得10
4秒前
劼大大完成签到,获得积分10
4秒前
最优解完成签到 ,获得积分20
5秒前
5秒前
通~发布了新的文献求助10
5秒前
一段乐多完成签到,获得积分10
6秒前
6秒前
6秒前
给我找完成签到,获得积分10
7秒前
桐桐应助Yuki0616采纳,获得10
7秒前
小马甲应助鸣隐采纳,获得10
7秒前
ycd完成签到,获得积分10
8秒前
ark861023完成签到,获得积分10
8秒前
淡定问芙完成签到,获得积分10
8秒前
斯文败类应助惠惠采纳,获得10
9秒前
9秒前
Meowly完成签到,获得积分10
9秒前
10秒前
10秒前
陶醉觅夏发布了新的文献求助10
10秒前
pu完成签到,获得积分10
10秒前
小灵通完成签到,获得积分10
10秒前
给我找发布了新的文献求助10
10秒前
科研通AI2S应助LIn采纳,获得10
11秒前
gaga完成签到,获得积分10
11秒前
_Charmo完成签到,获得积分10
11秒前
Slemon完成签到,获得积分10
11秒前
谦谦姜完成签到,获得积分10
13秒前
14秒前
JINGZHANG发布了新的文献求助10
14秒前
14秒前
归海天与应助糊弄学专家采纳,获得10
14秒前
风中的青完成签到,获得积分10
15秒前
15秒前
15秒前
duxinyue关注了科研通微信公众号
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794