Modeling Stock Price Dynamics With Fuzzy Opinion Networks

模糊逻辑 计算机科学 标准差 模糊集 模糊数 库存(枪支) 计量经济学 高斯分布 数学优化 经济 数学 人工智能 统计 量子力学 机械工程 物理 工程类
作者
Li-Xin Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 277-301 被引量:17
标识
DOI:10.1109/tfuzz.2016.2574911
摘要

We propose a mathematical model for the word-of-mouth communications among stock investors through social networks and explore how the changes of the investors' social networks influence the stock price dynamics and vice versa. An investor is modeled as a Gaussian fuzzy set (a fuzzy opinion) with the center and standard deviation as inputs and the fuzzy set itself as output. Investors are connected in the following fashion: the center input of an investor is taken as the average of the neighbors' outputs, where two investors are neighbors if their fuzzy opinions are close enough to each other, and the standard deviation (uncertainty) input is taken with local, global, or external reference schemes to model different scenarios of how investors define uncertainties. The centers and standard deviations of the fuzzy opinions are the expected prices and their uncertainties, respectively, that are used as inputs to the price dynamic equation. We prove that with the local reference scheme the investors converge to different groups in finite time, while with the global or external reference schemes all investors converge to a consensus within finite time and the consensus may change with time in the external reference case. We show how to model trend followers, contrarians, and manipulators within this mathematical framework and prove that the biggest enemy of a manipulator is the other manipulators. We perform Monte Carlo simulations to show how the model parameters influence the price dynamics, and we apply a modified version of the model to the daily closing prices of 15 top banking and real estate stocks in Hong Kong for the recent two years from December 5, 2013 to December 4, 2015 and discover that a sharp increase of the combined uncertainty is a reliable signal to predict the reversal of the current price trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tracy麦子完成签到,获得积分10
刚刚
AoAoo发布了新的文献求助10
1秒前
2秒前
zyy完成签到 ,获得积分10
2秒前
闭关修炼学术小菜鸡关注了科研通微信公众号
4秒前
5秒前
走走走完成签到 ,获得积分20
5秒前
搜集达人应助Chen采纳,获得20
6秒前
oceanao应助菜菜采纳,获得10
14秒前
琴_Q123完成签到,获得积分10
15秒前
可爱的香菇完成签到 ,获得积分10
17秒前
深情安青应助AoAoo采纳,获得10
17秒前
ssassassassa完成签到 ,获得积分10
17秒前
傢誠发布了新的文献求助10
20秒前
义气的元柏完成签到 ,获得积分10
20秒前
21秒前
徐徐完成签到,获得积分10
21秒前
21秒前
zane完成签到 ,获得积分10
22秒前
李健应助风趣夜云采纳,获得10
23秒前
23秒前
春天在这李完成签到 ,获得积分10
24秒前
24秒前
Ava应助zj采纳,获得10
25秒前
闭关修炼学术小菜鸡完成签到,获得积分10
30秒前
万能图书馆应助墨墨采纳,获得30
31秒前
33秒前
profit完成签到,获得积分10
33秒前
帅气的马里奥完成签到 ,获得积分10
34秒前
35秒前
大山竹完成签到,获得积分20
35秒前
huangdq6发布了新的文献求助10
37秒前
37秒前
37秒前
39秒前
40秒前
RenHP完成签到,获得积分10
42秒前
初雪平寒发布了新的文献求助10
42秒前
42秒前
华仔应助大山竹采纳,获得10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012