Modeling Stock Price Dynamics With Fuzzy Opinion Networks

模糊逻辑 计算机科学 标准差 模糊集 模糊数 库存(枪支) 计量经济学 高斯分布 数学优化 经济 数学 人工智能 统计 量子力学 机械工程 物理 工程类
作者
Li-Xin Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 277-301 被引量:17
标识
DOI:10.1109/tfuzz.2016.2574911
摘要

We propose a mathematical model for the word-of-mouth communications among stock investors through social networks and explore how the changes of the investors' social networks influence the stock price dynamics and vice versa. An investor is modeled as a Gaussian fuzzy set (a fuzzy opinion) with the center and standard deviation as inputs and the fuzzy set itself as output. Investors are connected in the following fashion: the center input of an investor is taken as the average of the neighbors' outputs, where two investors are neighbors if their fuzzy opinions are close enough to each other, and the standard deviation (uncertainty) input is taken with local, global, or external reference schemes to model different scenarios of how investors define uncertainties. The centers and standard deviations of the fuzzy opinions are the expected prices and their uncertainties, respectively, that are used as inputs to the price dynamic equation. We prove that with the local reference scheme the investors converge to different groups in finite time, while with the global or external reference schemes all investors converge to a consensus within finite time and the consensus may change with time in the external reference case. We show how to model trend followers, contrarians, and manipulators within this mathematical framework and prove that the biggest enemy of a manipulator is the other manipulators. We perform Monte Carlo simulations to show how the model parameters influence the price dynamics, and we apply a modified version of the model to the daily closing prices of 15 top banking and real estate stocks in Hong Kong for the recent two years from December 5, 2013 to December 4, 2015 and discover that a sharp increase of the combined uncertainty is a reliable signal to predict the reversal of the current price trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH完成签到,获得积分20
刚刚
1秒前
whm完成签到,获得积分10
1秒前
3秒前
邬傥完成签到,获得积分10
4秒前
tomato应助执着采纳,获得20
5秒前
大方嵩发布了新的文献求助10
5秒前
梓ccc完成签到,获得积分10
5秒前
5秒前
求助发布了新的文献求助10
6秒前
风雨1210发布了新的文献求助10
6秒前
6秒前
7秒前
小梁要加油完成签到,获得积分20
7秒前
Alpha发布了新的文献求助10
8秒前
刘鹏宇发布了新的文献求助10
9秒前
zhangscience完成签到,获得积分10
9秒前
可爱的函函应助若狂采纳,获得10
10秒前
小蘑菇应助阿美采纳,获得30
10秒前
科研通AI2S应助机智小虾米采纳,获得10
11秒前
充电宝应助Xx.采纳,获得10
12秒前
zhangscience发布了新的文献求助10
13秒前
深情安青应助大方嵩采纳,获得10
14秒前
英俊的铭应助大方嵩采纳,获得10
14秒前
李还好完成签到,获得积分10
15秒前
满意的柏柳完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
buno应助88采纳,获得10
18秒前
19秒前
三千世界完成签到,获得积分10
19秒前
19秒前
愉快的访旋完成签到,获得积分10
20秒前
Alpha完成签到,获得积分10
21秒前
大大发布了新的文献求助30
21秒前
翠翠发布了新的文献求助10
22秒前
半山发布了新的文献求助10
23秒前
23秒前
天天快乐应助CO2采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808