Modeling Stock Price Dynamics With Fuzzy Opinion Networks

模糊逻辑 计算机科学 标准差 模糊集 模糊数 库存(枪支) 计量经济学 高斯分布 数学优化 经济 数学 人工智能 统计 量子力学 机械工程 物理 工程类
作者
Li-Xin Wang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (2): 277-301 被引量:17
标识
DOI:10.1109/tfuzz.2016.2574911
摘要

We propose a mathematical model for the word-of-mouth communications among stock investors through social networks and explore how the changes of the investors' social networks influence the stock price dynamics and vice versa. An investor is modeled as a Gaussian fuzzy set (a fuzzy opinion) with the center and standard deviation as inputs and the fuzzy set itself as output. Investors are connected in the following fashion: the center input of an investor is taken as the average of the neighbors' outputs, where two investors are neighbors if their fuzzy opinions are close enough to each other, and the standard deviation (uncertainty) input is taken with local, global, or external reference schemes to model different scenarios of how investors define uncertainties. The centers and standard deviations of the fuzzy opinions are the expected prices and their uncertainties, respectively, that are used as inputs to the price dynamic equation. We prove that with the local reference scheme the investors converge to different groups in finite time, while with the global or external reference schemes all investors converge to a consensus within finite time and the consensus may change with time in the external reference case. We show how to model trend followers, contrarians, and manipulators within this mathematical framework and prove that the biggest enemy of a manipulator is the other manipulators. We perform Monte Carlo simulations to show how the model parameters influence the price dynamics, and we apply a modified version of the model to the daily closing prices of 15 top banking and real estate stocks in Hong Kong for the recent two years from December 5, 2013 to December 4, 2015 and discover that a sharp increase of the combined uncertainty is a reliable signal to predict the reversal of the current price trend.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疏才发布了新的文献求助10
刚刚
2秒前
柠檬完成签到 ,获得积分10
3秒前
骆展羽完成签到 ,获得积分10
4秒前
dzc完成签到,获得积分20
4秒前
星辰大海应助lignin采纳,获得10
5秒前
zdq10068发布了新的文献求助10
6秒前
cheng完成签到,获得积分10
8秒前
敏敏敏呐完成签到,获得积分10
8秒前
8秒前
yydragen应助孙朱珠采纳,获得10
8秒前
大模型应助笨笨的曼文采纳,获得10
9秒前
9秒前
里lilili完成签到,获得积分10
11秒前
11秒前
吴嘉俊发布了新的文献求助10
11秒前
落寞飞烟完成签到,获得积分10
12秒前
12秒前
琳毓完成签到 ,获得积分10
13秒前
时尚战斗机应助阔达苡采纳,获得10
13秒前
14秒前
褚洙完成签到,获得积分0
14秒前
zdq10068完成签到,获得积分10
16秒前
派大星和海绵宝宝完成签到,获得积分10
16秒前
风中远山完成签到,获得积分10
16秒前
dd发布了新的文献求助30
16秒前
Ava应助kk采纳,获得10
17秒前
琳毓关注了科研通微信公众号
17秒前
18秒前
20秒前
坐以待币完成签到 ,获得积分10
21秒前
xiaoyan.yao发布了新的文献求助10
21秒前
lignin发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
24秒前
neil_match完成签到,获得积分10
25秒前
27秒前
ommphey发布了新的文献求助30
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689