Classification and Quantification of Microplastics (<100 μm) Using a Focal Plane Array–Fourier Transform Infrared Imaging System and Machine Learning

微塑料 高光谱成像 生物系统 化学 化学成像 人工智能 模式识别(心理学) 环境化学 计算机科学 生物
作者
Vitor Hugo da Silva,Fionn Murphy,José Manuel Amigo,Colin A. Stedmon,Jakob Strand
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (20): 13724-13733 被引量:113
标识
DOI:10.1021/acs.analchem.0c01324
摘要

Microplastics are defined as microscopic plastic particles in the range from few micrometers and up to 5 mm. These small particles are classified as primary microplastics when they are manufactured in this size range, whereas secondary microplastics arise from the fragmentation of larger objects. Microplastics are widespread emerging pollutants, and investigations are underway to determine potential harmfulness to biota and human health. However, progress is hindered by the lack of suitable analytical methods for rapid, routine, and unbiased measurements. This work aims to develop an automated analytical method for the characterization of small microplastics (<100 μm) using micro-Fourier transform infrared (μ-FTIR) hyperspectral imaging and machine learning tools. Partial least squares discriminant analysis (PLS-DA) and soft independent modeling of class analogy (SIMCA) models were evaluated, applying different data preprocessing strategies for classification of nine of the most common polymers produced worldwide. The hyperspectral images were also analyzed to quantify particle abundance and size automatically. PLS-DA presented a better analytical performance in comparison with SIMCA models with higher sensitivity, sensibility, and lower misclassification error. PLS-DA was less sensitive to edge effects on spectra and poorly focused regions of particles. The approach was tested on a seabed sediment sample (Roskilde Fjord, Denmark) to demonstrate the method efficiency. The proposed method offers an efficient automated approach for microplastic polymer characterization, abundance numeration, and size distribution with substantial benefits for method standardization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ryeong完成签到,获得积分10
刚刚
安笙凉城发布了新的文献求助10
1秒前
斗图不怕输完成签到,获得积分10
1秒前
1秒前
stelle完成签到,获得积分10
3秒前
mins完成签到,获得积分20
4秒前
4秒前
渊思发布了新的文献求助10
5秒前
现代的bb完成签到,获得积分10
6秒前
6秒前
胡里奥完成签到,获得积分10
6秒前
感动的念双完成签到,获得积分10
7秒前
CHENG_2025完成签到,获得积分10
8秒前
二三发布了新的文献求助10
9秒前
嵇如雪完成签到,获得积分10
9秒前
善学以致用应助mins采纳,获得10
10秒前
10秒前
小酒迟疑完成签到,获得积分10
12秒前
rh1006发布了新的文献求助10
13秒前
云不暇完成签到 ,获得积分10
14秒前
小v完成签到 ,获得积分10
14秒前
17秒前
思源应助科研进化中采纳,获得10
20秒前
ll发布了新的文献求助10
23秒前
23秒前
追寻梦之完成签到 ,获得积分10
23秒前
小虎应助俏皮的飞柏采纳,获得10
23秒前
可爱的函函应助二三采纳,获得10
25秒前
南兮发布了新的文献求助10
28秒前
dawn完成签到,获得积分10
29秒前
小虎应助刻苦冰颜采纳,获得30
29秒前
32秒前
orixero应助ht采纳,获得10
33秒前
小虎应助rh1006采纳,获得10
34秒前
邓云峰888发布了新的文献求助10
35秒前
1235完成签到,获得积分10
36秒前
黑苹果发布了新的文献求助10
37秒前
haocong完成签到 ,获得积分10
38秒前
SciGPT应助曼曼采纳,获得10
39秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343