Photo‐synergetic nitrogen‐doped MXene /reduced graphene oxide sandwich‐like architecture for high‐performance lithium‐sulfur batteries

石墨烯 材料科学 电化学 化学工程 氧化物 堆积 吸附 氮气 电极 锂(药物) 兴奋剂 硫黄 纳米技术 无机化学 化学 有机化学 光电子学 物理化学 冶金 内分泌学 工程类 医学
作者
Zhun Wang,Xinyu Li,Congxu Xuan,Jiajin Li,Yunlong Jiang,Jianrong Xiao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (2): 2728-2738 被引量:15
标识
DOI:10.1002/er.5965
摘要

A valid 3D sandwich-like architecture of highly conductive Ti3C2Tx nanosheets with efficient 2D polar adsorption surfaces was evenly intercalated into graphene oxide (GO) skeletons with strong bridging via modified liquid phase impregnation, followed by a novel photo-synthetic nitrogen doping process (N-RGO/Ti3C2Tx). This novel photo-synthetic nitrogen doping method not only reduced the GO in a short time but also induced nitrogen doping into the composite easily. Within the rationally designed sandwich-like architecture, Ti3C2Tx interacted with reduced GO to construct a 3D conductive layer structure while inhibiting mutual stacking, thereby facilitating fast ion/electron transport and strong chemisorption for polysulfides, and also effectively buffering the volume expansion of electrodes during the discharge. In addition, the moderate chemical modulation induced by nitrogen doping achieved abundant defects and active sites, thereby improving the chemical immobilization for polysulfides. As sulfur host, the N-RGO/Ti3C2Tx sandwich-like architecture with 76.4 wt% sulfur could deliver excellent electrochemical performance due to the synergy of the above-mentioned merits. A superior reversible capacity of approximately 1180 mAh g−1 could be achieved over 200 cycles at 0.1 C. Even after cycling 200 times at 0.5 C, a high capacity of 850 mAh g−1 could still be obtained with a capacity retention of 82.5%. We rationally designed a novel structure and then used a facile photo-synthetic nitrogen doping strategy for surface modification, thus offering a new idea for designing multifunctional sulfur host for high-performance lithium-sulfur batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
solar完成签到,获得积分10
1秒前
dwj完成签到,获得积分10
2秒前
单薄惜文发布了新的文献求助10
2秒前
刘机智完成签到,获得积分10
3秒前
谢谢各位大佬完成签到,获得积分10
3秒前
蔡蔡不菜菜完成签到,获得积分10
3秒前
3秒前
斑斑完成签到,获得积分10
4秒前
传奇3应助典雅的俊驰采纳,获得10
5秒前
小海完成签到 ,获得积分10
5秒前
JamesTYD发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
从容的文涛完成签到,获得积分10
6秒前
玩命的静丹完成签到,获得积分10
6秒前
小麻发布了新的文献求助30
6秒前
wenyaq完成签到,获得积分10
7秒前
7秒前
菲菲酱完成签到 ,获得积分10
7秒前
努力努力再努力应助yuxin采纳,获得10
7秒前
8秒前
8秒前
喝醉酒的猫完成签到,获得积分10
8秒前
叩墙牲进化版完成签到,获得积分10
9秒前
10秒前
机智向松完成签到,获得积分10
10秒前
11秒前
9xixixixixixixi完成签到,获得积分10
11秒前
标致夜安发布了新的文献求助10
12秒前
12秒前
不安的宛丝完成签到,获得积分10
12秒前
13秒前
13秒前
上官若男应助fff采纳,获得10
14秒前
qsr完成签到,获得积分10
14秒前
zpf完成签到,获得积分20
14秒前
好好好好好完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311604
求助须知:如何正确求助?哪些是违规求助? 2944429
关于积分的说明 8519013
捐赠科研通 2619785
什么是DOI,文献DOI怎么找? 1432582
科研通“疑难数据库(出版商)”最低求助积分说明 664714
邀请新用户注册赠送积分活动 649982