Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks

近距离放射治疗 宫颈癌 卷积神经网络 计算机科学 分割 人工智能 医学物理学 放射科 放射治疗 核医学 医学 癌症 内科学
作者
Daguang Zhang,Zhiyong Yang,Shan Jiang,Zeyang Zhou,Maobin Meng,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:21 (10): 158-169 被引量:22
标识
DOI:10.1002/acm2.13024
摘要

In this study, we present deep learning-based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimensional (3D) convolutional neural network (CNN) architecture was proposed and referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator reconstruction was achieved with DSD-UNET-based segmentation of applicator components followed by 3D skeletonization and polynomial curve fitting. Digitization of the channel paths for tandem and ovoid applicator in the planning CT was evaluated utilizing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The segmentation performance of DSD-UNET was compared with that of 3D U-Net. Results showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and 82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of automatic applicator reconstruction, outstanding segmentation accuracy was first achieved for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of 2.3 mm). Finally, HDs between the channel paths determined automatically and manually were 0.88 ± 0.12 mm, 0.95 ± 0.16 mm, and 0.96 ± 0.15 mm for the intrauterine, left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method outperformed the 3D U-Net and could segment HR-CTV, bladder, and rectum with relatively good accuracy. Accurate digitization of the channel paths could be achieved with the DSD-UNET-based method. The proposed approaches could be useful to improve the efficiency and consistency of treatment planning for cervical cancer BT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nova完成签到,获得积分10
1秒前
Seciy完成签到 ,获得积分10
1秒前
3秒前
qh5706发布了新的文献求助10
3秒前
5秒前
何先生发布了新的文献求助10
6秒前
江峰发布了新的文献求助10
7秒前
kingwill应助Panjiao采纳,获得30
8秒前
Akim应助疯狂的沛岚采纳,获得10
8秒前
博修发布了新的文献求助10
8秒前
8秒前
当当发布了新的文献求助10
9秒前
10秒前
10秒前
xun应助背后丹妗采纳,获得30
10秒前
qh5706完成签到,获得积分10
11秒前
11秒前
柠檬完成签到 ,获得积分10
12秒前
情怀应助Cuisine采纳,获得10
12秒前
Owen应助江峰采纳,获得10
14秒前
LV发布了新的文献求助10
14秒前
loong发布了新的文献求助10
16秒前
冯冯发布了新的文献求助10
18秒前
研友_LBR9gL发布了新的文献求助10
18秒前
19秒前
英俊的铭应助boboko采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
LV完成签到,获得积分20
21秒前
xixi完成签到 ,获得积分10
22秒前
胖虎完成签到,获得积分10
22秒前
背后丹妗完成签到,获得积分10
23秒前
Catalina_S举报深情芷求助涉嫌违规
23秒前
23秒前
yzk发布了新的文献求助10
25秒前
勤劳影子发布了新的文献求助20
26秒前
27秒前
27秒前
阳光珍发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586078
求助须知:如何正确求助?哪些是违规求助? 4002708
关于积分的说明 12390961
捐赠科研通 3678812
什么是DOI,文献DOI怎么找? 2027659
邀请新用户注册赠送积分活动 1061125
科研通“疑难数据库(出版商)”最低求助积分说明 947484