Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks

近距离放射治疗 宫颈癌 卷积神经网络 计算机科学 分割 人工智能 医学物理学 放射科 放射治疗 核医学 医学 癌症 内科学
作者
Daguang Zhang,Zhiyong Yang,Shan Jiang,Zeyang Zhou,Maobin Meng,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:21 (10): 158-169 被引量:22
标识
DOI:10.1002/acm2.13024
摘要

In this study, we present deep learning-based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimensional (3D) convolutional neural network (CNN) architecture was proposed and referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator reconstruction was achieved with DSD-UNET-based segmentation of applicator components followed by 3D skeletonization and polynomial curve fitting. Digitization of the channel paths for tandem and ovoid applicator in the planning CT was evaluated utilizing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The segmentation performance of DSD-UNET was compared with that of 3D U-Net. Results showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and 82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of automatic applicator reconstruction, outstanding segmentation accuracy was first achieved for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of 2.3 mm). Finally, HDs between the channel paths determined automatically and manually were 0.88 ± 0.12 mm, 0.95 ± 0.16 mm, and 0.96 ± 0.15 mm for the intrauterine, left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method outperformed the 3D U-Net and could segment HR-CTV, bladder, and rectum with relatively good accuracy. Accurate digitization of the channel paths could be achieved with the DSD-UNET-based method. The proposed approaches could be useful to improve the efficiency and consistency of treatment planning for cervical cancer BT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Ming完成签到,获得积分10
1秒前
WJ完成签到,获得积分10
1秒前
谦让的傲芙完成签到,获得积分10
1秒前
zzk完成签到,获得积分10
2秒前
jzm完成签到,获得积分10
4秒前
卜哥完成签到 ,获得积分10
6秒前
10秒前
大胆菲音发布了新的文献求助30
11秒前
吴宵完成签到,获得积分10
11秒前
11秒前
浮游应助舞星辰采纳,获得10
12秒前
ceeray23应助单纯的迎夏采纳,获得10
12秒前
12秒前
星辰大海应助Shenqm采纳,获得10
13秒前
ler0100完成签到,获得积分10
13秒前
赘婿应助柚子苗采纳,获得10
13秒前
杰老爷完成签到,获得积分10
14秒前
思源应助venihall采纳,获得30
14秒前
15秒前
寰宇完成签到,获得积分10
15秒前
充电宝应助瞬间de回眸采纳,获得10
16秒前
haifeng发布了新的文献求助10
16秒前
明亮的老四完成签到 ,获得积分10
16秒前
17秒前
医学生的小宝库完成签到,获得积分20
17秒前
xialuoke发布了新的文献求助10
18秒前
花痴的香菇完成签到,获得积分10
18秒前
18秒前
LuoJiajun完成签到,获得积分10
19秒前
玉鱼儿完成签到 ,获得积分10
20秒前
20秒前
20秒前
水梦语完成签到,获得积分10
21秒前
三杠完成签到 ,获得积分10
21秒前
666发布了新的文献求助10
23秒前
24秒前
单纯的迎夏完成签到,获得积分10
25秒前
烤鸭完成签到 ,获得积分10
25秒前
旺旺发布了新的文献求助10
25秒前
团结完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595937
关于积分的说明 14450753
捐赠科研通 4528891
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653