清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks

近距离放射治疗 宫颈癌 卷积神经网络 计算机科学 分割 人工智能 医学物理学 放射科 放射治疗 核医学 医学 癌症 内科学
作者
Daguang Zhang,Zhiyong Yang,Shan Jiang,Zeyang Zhou,Maobin Meng,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:21 (10): 158-169 被引量:22
标识
DOI:10.1002/acm2.13024
摘要

In this study, we present deep learning-based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimensional (3D) convolutional neural network (CNN) architecture was proposed and referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator reconstruction was achieved with DSD-UNET-based segmentation of applicator components followed by 3D skeletonization and polynomial curve fitting. Digitization of the channel paths for tandem and ovoid applicator in the planning CT was evaluated utilizing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The segmentation performance of DSD-UNET was compared with that of 3D U-Net. Results showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and 82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of automatic applicator reconstruction, outstanding segmentation accuracy was first achieved for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of 2.3 mm). Finally, HDs between the channel paths determined automatically and manually were 0.88 ± 0.12 mm, 0.95 ± 0.16 mm, and 0.96 ± 0.15 mm for the intrauterine, left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method outperformed the 3D U-Net and could segment HR-CTV, bladder, and rectum with relatively good accuracy. Accurate digitization of the channel paths could be achieved with the DSD-UNET-based method. The proposed approaches could be useful to improve the efficiency and consistency of treatment planning for cervical cancer BT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
30秒前
跳跃的鹏飞完成签到 ,获得积分10
37秒前
心想柿橙完成签到,获得积分10
38秒前
科研通AI2S应助风中不斜采纳,获得10
39秒前
婼汐完成签到 ,获得积分10
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
简因完成签到 ,获得积分10
2分钟前
3分钟前
Becky完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
桥西小河完成签到 ,获得积分10
3分钟前
胡可完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
紫熊完成签到,获得积分10
4分钟前
5分钟前
111完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
矢思然完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
7分钟前
小二郎应助科研通管家采纳,获得10
7分钟前
8分钟前
小花匠发布了新的文献求助50
8分钟前
呃呃呃呃呃完成签到 ,获得积分10
8分钟前
冷傲半邪完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
9分钟前
紫熊发布了新的文献求助10
9分钟前
张同学快去做实验呀完成签到,获得积分10
9分钟前
9分钟前
紫熊发布了新的文献求助10
10分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209