Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks

近距离放射治疗 宫颈癌 卷积神经网络 计算机科学 分割 人工智能 医学物理学 放射科 放射治疗 核医学 医学 癌症 内科学
作者
Daguang Zhang,Zhiyong Yang,Shan Jiang,Zeyang Zhou,Maobin Meng,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:21 (10): 158-169 被引量:22
标识
DOI:10.1002/acm2.13024
摘要

In this study, we present deep learning-based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimensional (3D) convolutional neural network (CNN) architecture was proposed and referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator reconstruction was achieved with DSD-UNET-based segmentation of applicator components followed by 3D skeletonization and polynomial curve fitting. Digitization of the channel paths for tandem and ovoid applicator in the planning CT was evaluated utilizing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The segmentation performance of DSD-UNET was compared with that of 3D U-Net. Results showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and 82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of automatic applicator reconstruction, outstanding segmentation accuracy was first achieved for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of 2.3 mm). Finally, HDs between the channel paths determined automatically and manually were 0.88 ± 0.12 mm, 0.95 ± 0.16 mm, and 0.96 ± 0.15 mm for the intrauterine, left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method outperformed the 3D U-Net and could segment HR-CTV, bladder, and rectum with relatively good accuracy. Accurate digitization of the channel paths could be achieved with the DSD-UNET-based method. The proposed approaches could be useful to improve the efficiency and consistency of treatment planning for cervical cancer BT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Paul完成签到,获得积分10
刚刚
刚刚
2秒前
西瓜发布了新的文献求助10
2秒前
酬勤发布了新的文献求助10
2秒前
科研通AI2S应助wheattt采纳,获得10
2秒前
樱_花qxy发布了新的文献求助30
3秒前
3秒前
3秒前
3秒前
芝士大王发布了新的文献求助10
4秒前
Jasper应助韩钰小宝采纳,获得10
5秒前
英勇便当完成签到,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
7秒前
饱满绝施应助123456采纳,获得10
7秒前
7秒前
rosalieshi应助GUMC采纳,获得30
8秒前
星辰大海应助dhfify采纳,获得10
9秒前
慕青应助哈尔采纳,获得10
9秒前
尼克拉倒发布了新的文献求助30
9秒前
9秒前
杨金城发布了新的文献求助10
10秒前
ouyggg发布了新的文献求助10
10秒前
阿冰发布了新的文献求助10
10秒前
11秒前
良辰应助糕手糕手糕糕手采纳,获得10
13秒前
YY完成签到 ,获得积分10
13秒前
13秒前
竹坞听荷发布了新的文献求助10
13秒前
日喝抽打发布了新的文献求助10
13秒前
14秒前
沉默的南珍完成签到,获得积分10
15秒前
1214056634完成签到,获得积分10
15秒前
羊羊完成签到,获得积分10
15秒前
嗯嗯嗯完成签到,获得积分10
15秒前
18秒前
天天快乐应助ricardo采纳,获得10
18秒前
19秒前
MX001完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309390
求助须知:如何正确求助?哪些是违规求助? 2942720
关于积分的说明 8510546
捐赠科研通 2617838
什么是DOI,文献DOI怎么找? 1430566
科研通“疑难数据库(出版商)”最低求助积分说明 664171
邀请新用户注册赠送积分活动 649319