Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks

近距离放射治疗 宫颈癌 卷积神经网络 计算机科学 分割 人工智能 医学物理学 放射科 放射治疗 核医学 医学 癌症 内科学
作者
Daguang Zhang,Zhiyong Yang,Shan Jiang,Zeyang Zhou,Maobin Meng,Wei Wang
出处
期刊:Journal of Applied Clinical Medical Physics [Wiley]
卷期号:21 (10): 158-169 被引量:22
标识
DOI:10.1002/acm2.13024
摘要

In this study, we present deep learning-based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three-dimensional (3D) convolutional neural network (CNN) architecture was proposed and referred to as DSD-UNET. The dataset of 91 patients received CT-based BT of cervical cancer was used to train and test DSD-UNET model for auto-segmentation of high-risk clinical target volume (HR-CTV) and organs at risk (OARs). Automatic applicator reconstruction was achieved with DSD-UNET-based segmentation of applicator components followed by 3D skeletonization and polynomial curve fitting. Digitization of the channel paths for tandem and ovoid applicator in the planning CT was evaluated utilizing the data from 32 patients. Dice similarity coefficient (DSC), Jaccard Index (JI), and Hausdorff distance (HD) were used to quantitatively evaluate the accuracy. The segmentation performance of DSD-UNET was compared with that of 3D U-Net. Results showed that DSD-UNET method outperformed 3D U-Net on segmentations of all the structures. The mean DSC values of DSD-UNET method were 86.9%, 82.9%, and 82.1% for bladder, HR-CTV, and rectum, respectively. For the performance of automatic applicator reconstruction, outstanding segmentation accuracy was first achieved for the intrauterine and ovoid tubes (average DSC value of 92.1%, average HD value of 2.3 mm). Finally, HDs between the channel paths determined automatically and manually were 0.88 ± 0.12 mm, 0.95 ± 0.16 mm, and 0.96 ± 0.15 mm for the intrauterine, left ovoid, and right ovoid tubes, respectively. The proposed DSD-UNET method outperformed the 3D U-Net and could segment HR-CTV, bladder, and rectum with relatively good accuracy. Accurate digitization of the channel paths could be achieved with the DSD-UNET-based method. The proposed approaches could be useful to improve the efficiency and consistency of treatment planning for cervical cancer BT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
学术脑袋发布了新的文献求助10
3秒前
lifangqi完成签到,获得积分20
4秒前
5秒前
5秒前
hannah完成签到,获得积分10
6秒前
酸奶烤着吃完成签到,获得积分10
7秒前
Owen应助391X小king采纳,获得10
8秒前
8秒前
小古完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
梦幻发布了新的文献求助10
10秒前
楚博完成签到,获得积分10
10秒前
Am1r完成签到,获得积分10
10秒前
hannah发布了新的文献求助20
11秒前
赵康康发布了新的文献求助10
11秒前
蒸盐粥发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
实验顺利完成签到,获得积分10
18秒前
不期而遇发布了新的文献求助10
18秒前
18秒前
我是老大应助拼搏的无心采纳,获得10
19秒前
20秒前
20秒前
烟花应助hay采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
XUXU发布了新的文献求助10
21秒前
老黄鱼完成签到,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
顺心的海菡完成签到,获得积分10
23秒前
亦犹未进发布了新的文献求助10
25秒前
Ljq发布了新的文献求助10
26秒前
ahhh发布了新的文献求助10
26秒前
虚拟的鼠标完成签到,获得积分10
27秒前
梦幻完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365