A Computer Vision Platform to Automatically Locate Critical Events in Surgical Videos

剪辑 医学 工作流程 腹腔镜胆囊切除术 人工智能 胆囊管 计算机视觉 计算机科学 外科 数据库
作者
Pietro Mascagni,Deepak Alapatt,Takeshi Urade,Armine Vardazaryan,Didier Mutter,Jacques Marescaux,Guido Costamagna,Bernard Dallemagne,Nicolas Padoy
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:274 (1): e93-e95 被引量:58
标识
DOI:10.1097/sla.0000000000004736
摘要

Objective: The aim of this study was to develop a computer vision platform to automatically locate critical events in surgical videos and provide short video clips documenting the critical view of safety (CVS) in laparoscopic cholecystectomy (LC). Background: Intraoperative events are typically documented through operator-dictated reports that do not always translate the operative reality. Surgical videos provide complete information on surgical procedures, but the burden associated with storing and manually analyzing full-length videos has so far limited their effective use. Methods: A computer vision platform named EndoDigest was developed and used to analyze LC videos. The mean absolute error (MAE) of the platform in automatically locating the manually annotated time of the cystic duct division in full-length videos was assessed. The relevance of the automatically extracted short video clips was evaluated by calculating the percentage of video clips in which the CVS was assessable by surgeons. Results: A total of 155 LC videos were analyzed: 55 of these videos were used to develop EndoDigest, whereas the remaining 100 were used to test it. The time of the cystic duct division was automatically located with a MAE of 62.8 ± 130.4 seconds (1.95% of full-length video duration). CVS was assessable in 91% of the 2.5 minutes long video clips automatically extracted from the considered test procedures. Conclusions: Deep learning models for workflow analysis can be used to reliably locate critical events in surgical videos and document CVS in LC. Further studies are needed to assess the clinical impact of surgical data science solutions for safer laparoscopic cholecystectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮生发布了新的文献求助10
1秒前
sweetsev7n关注了科研通微信公众号
1秒前
WW发布了新的文献求助10
1秒前
qaq完成签到,获得积分10
2秒前
kkssrrrr完成签到 ,获得积分10
2秒前
zhangst发布了新的文献求助10
4秒前
Eva完成签到,获得积分10
6秒前
李健的小迷弟应助青炀采纳,获得10
8秒前
9秒前
zhangst完成签到,获得积分10
10秒前
优雅静枫发布了新的文献求助10
12秒前
科研修沟发布了新的文献求助10
12秒前
领导范儿应助lll采纳,获得10
13秒前
Estrella应助Christina采纳,获得10
13秒前
14秒前
15秒前
15秒前
sweetsev7n发布了新的文献求助20
16秒前
容止完成签到 ,获得积分10
16秒前
16秒前
17秒前
我是老大应助WW采纳,获得10
17秒前
狗蛋完成签到 ,获得积分10
18秒前
小白完成签到,获得积分10
18秒前
19秒前
淡淡菠萝发布了新的文献求助10
19秒前
111发布了新的文献求助10
20秒前
林夏发布了新的文献求助10
20秒前
假面绅士发布了新的文献求助10
20秒前
Ginger发布了新的文献求助10
21秒前
失眠思雁发布了新的文献求助30
22秒前
23秒前
zzn发布了新的文献求助10
24秒前
wpybird完成签到,获得积分10
26秒前
27秒前
28秒前
Carlos完成签到 ,获得积分10
29秒前
廉凌波完成签到,获得积分20
29秒前
平常代天发布了新的文献求助10
29秒前
WW完成签到,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791539
关于积分的说明 7799401
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302124
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194