Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer

医学 列线图 接收机工作特性 阶段(地层学) 肺癌 放射科 无线电技术 腺癌 正电子发射断层摄影术 核医学 癌症 肿瘤科 内科学 古生物学 生物
作者
Yanlei Ji,Qingtao Qiu,Jing Fu,Kai Cui,Xia Chen,Ligang Xing,Xuejun Sun
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 13: 307-317 被引量:8
标识
DOI:10.2147/cmar.s287128
摘要

To investigate the impact of staging on differences in glucose metabolic heterogeneity between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) textural analysis and to develop a stage-specific PET radiomic prediction model to distinguish lung ADC from SCC.Patients who were histologically diagnosed with lung ADC or SCC and underwent pretreatment 18F-FDG PET/CT scans were retrospectively identified. Radiomic features were extracted from a semiautomatically outlined tumor region in the Chang-Gung Image Texture Analysis (CGITA) software package. The differences in radiomic parameters between lung ADC and SCC were compared stage-by-stage in 253 consecutive NSCLC patients with stages I to III disease. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection. A radiomic signature for each stage was subsequently constructed and evaluated. Then, an individual nomogram incorporating the radiomic signature and clinical risk factors was established and evaluated. The performance of the constructed models was assessed by receiver operating characteristic (ROC) curve analysis, and the nomogram was further validated by calibration curve analysis.The performance of the radiomic signature for distinguishing lung ADC and SCC in both the training and validation cohorts was good, with AUCs of 0.883, 0.854, and 0.895 in the training cohort and 0.932, 0.944, and 0.886 in the validation cohort for stages I, II, and III NSCLC, respectively. The radiomic-clinical nomogram integrating radiomic features with independent clinical predictors exhibited more favorable discriminative performance, with AUCs of 0.982, 0.963, and 0.979 in the training cohort and 0.989, 0.984, and 0.978 in the validation cohort for stages I, II, and III, respectively.Differences in PET radiomic features between lung ADC and SCC varied in different stages. Stage-specific PET radiomic prediction models provided more favorable performance for discriminating the histological subtype of NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文败类应助Te采纳,获得10
1秒前
王枫发布了新的文献求助10
1秒前
苹果涵蕾完成签到,获得积分10
1秒前
科研通AI6应助田小班采纳,获得10
1秒前
吴静慧完成签到 ,获得积分10
2秒前
2秒前
蒋若风发布了新的文献求助10
3秒前
buno应助张益发采纳,获得10
3秒前
4秒前
LQQ发布了新的文献求助10
4秒前
轻歌水越发布了新的文献求助10
4秒前
4秒前
Owen应助怕孤独的迎梦采纳,获得10
4秒前
霖尤发布了新的文献求助20
5秒前
5秒前
遇见完成签到,获得积分20
5秒前
尼古拉斯发布了新的文献求助10
6秒前
6秒前
在水一方应助HCT采纳,获得10
7秒前
hhl完成签到,获得积分10
7秒前
7秒前
Eukarya完成签到,获得积分10
7秒前
勿忘9451发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
zzz完成签到,获得积分10
9秒前
清脆苑博发布了新的文献求助10
9秒前
xuxuux完成签到,获得积分10
9秒前
10秒前
cc发布了新的文献求助10
10秒前
10秒前
ceeray23应助薄荷喵采纳,获得10
10秒前
在水一方应助小宇采纳,获得10
11秒前
4149发布了新的文献求助10
11秒前
11秒前
12秒前
无极微光应助123456采纳,获得20
13秒前
夕寸发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836