Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer

医学 列线图 接收机工作特性 阶段(地层学) 肺癌 放射科 无线电技术 腺癌 正电子发射断层摄影术 核医学 癌症 肿瘤科 内科学 古生物学 生物
作者
Yanlei Ji,Qingtao Qiu,Jing Fu,Kai Cui,Xia Chen,Ligang Xing,Xuejun Sun
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 13: 307-317 被引量:8
标识
DOI:10.2147/cmar.s287128
摘要

To investigate the impact of staging on differences in glucose metabolic heterogeneity between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) textural analysis and to develop a stage-specific PET radiomic prediction model to distinguish lung ADC from SCC.Patients who were histologically diagnosed with lung ADC or SCC and underwent pretreatment 18F-FDG PET/CT scans were retrospectively identified. Radiomic features were extracted from a semiautomatically outlined tumor region in the Chang-Gung Image Texture Analysis (CGITA) software package. The differences in radiomic parameters between lung ADC and SCC were compared stage-by-stage in 253 consecutive NSCLC patients with stages I to III disease. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection. A radiomic signature for each stage was subsequently constructed and evaluated. Then, an individual nomogram incorporating the radiomic signature and clinical risk factors was established and evaluated. The performance of the constructed models was assessed by receiver operating characteristic (ROC) curve analysis, and the nomogram was further validated by calibration curve analysis.The performance of the radiomic signature for distinguishing lung ADC and SCC in both the training and validation cohorts was good, with AUCs of 0.883, 0.854, and 0.895 in the training cohort and 0.932, 0.944, and 0.886 in the validation cohort for stages I, II, and III NSCLC, respectively. The radiomic-clinical nomogram integrating radiomic features with independent clinical predictors exhibited more favorable discriminative performance, with AUCs of 0.982, 0.963, and 0.979 in the training cohort and 0.989, 0.984, and 0.978 in the validation cohort for stages I, II, and III, respectively.Differences in PET radiomic features between lung ADC and SCC varied in different stages. Stage-specific PET radiomic prediction models provided more favorable performance for discriminating the histological subtype of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gandiva完成签到,获得积分10
刚刚
刚刚
向日葵发布了新的文献求助10
1秒前
科研通AI6应助JJJ采纳,获得10
5秒前
5秒前
jf关注了科研通微信公众号
6秒前
金条完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
要减肥白开水完成签到,获得积分10
9秒前
ChristineJay完成签到,获得积分10
9秒前
20010完成签到,获得积分10
10秒前
SixDogs发布了新的文献求助13
11秒前
11秒前
搞笑地雷完成签到 ,获得积分10
11秒前
11完成签到,获得积分10
12秒前
贺格平发布了新的文献求助10
12秒前
小董完成签到,获得积分20
15秒前
BENpao123发布了新的文献求助10
15秒前
所所应助无问西东采纳,获得10
16秒前
16秒前
17秒前
bombing2048完成签到 ,获得积分10
18秒前
Hello应助谦让寄容采纳,获得10
18秒前
香蕉觅云应助Wenyilong采纳,获得10
18秒前
20秒前
lml发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
刻苦秋尽完成签到,获得积分20
21秒前
空白发布了新的文献求助10
21秒前
justin完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
科研通AI6应助lex采纳,获得10
23秒前
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648