Stage-Specific PET Radiomic Prediction Model for the Histological Subtype Classification of Non-Small-Cell Lung Cancer

医学 列线图 接收机工作特性 阶段(地层学) 肺癌 放射科 无线电技术 腺癌 正电子发射断层摄影术 核医学 癌症 肿瘤科 内科学 生物 古生物学
作者
Yanlei Ji,Qingtao Qiu,Jing Fu,Kai Cui,Xia Chen,Ligang Xing,Xuejun Sun
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 13: 307-317 被引量:8
标识
DOI:10.2147/cmar.s287128
摘要

To investigate the impact of staging on differences in glucose metabolic heterogeneity between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) textural analysis and to develop a stage-specific PET radiomic prediction model to distinguish lung ADC from SCC.Patients who were histologically diagnosed with lung ADC or SCC and underwent pretreatment 18F-FDG PET/CT scans were retrospectively identified. Radiomic features were extracted from a semiautomatically outlined tumor region in the Chang-Gung Image Texture Analysis (CGITA) software package. The differences in radiomic parameters between lung ADC and SCC were compared stage-by-stage in 253 consecutive NSCLC patients with stages I to III disease. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature selection. A radiomic signature for each stage was subsequently constructed and evaluated. Then, an individual nomogram incorporating the radiomic signature and clinical risk factors was established and evaluated. The performance of the constructed models was assessed by receiver operating characteristic (ROC) curve analysis, and the nomogram was further validated by calibration curve analysis.The performance of the radiomic signature for distinguishing lung ADC and SCC in both the training and validation cohorts was good, with AUCs of 0.883, 0.854, and 0.895 in the training cohort and 0.932, 0.944, and 0.886 in the validation cohort for stages I, II, and III NSCLC, respectively. The radiomic-clinical nomogram integrating radiomic features with independent clinical predictors exhibited more favorable discriminative performance, with AUCs of 0.982, 0.963, and 0.979 in the training cohort and 0.989, 0.984, and 0.978 in the validation cohort for stages I, II, and III, respectively.Differences in PET radiomic features between lung ADC and SCC varied in different stages. Stage-specific PET radiomic prediction models provided more favorable performance for discriminating the histological subtype of NSCLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爱笑飞飞发布了新的文献求助10
刚刚
3秒前
3秒前
3秒前
2389937250应助沐沐采纳,获得200
3秒前
陈伟霆发布了新的文献求助10
4秒前
dingz完成签到,获得积分0
7秒前
丢一池月光完成签到,获得积分10
7秒前
小张发布了新的文献求助10
9秒前
科研通AI2S应助卫卫采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
文静入学发布了新的文献求助10
12秒前
高兴的小虾米完成签到,获得积分10
13秒前
嗯嗯你说完成签到,获得积分10
14秒前
锦七完成签到,获得积分10
16秒前
CXSCXD完成签到,获得积分10
16秒前
优美从雪发布了新的文献求助10
16秒前
ww完成签到,获得积分10
17秒前
英俊的铭应助搞怪的外套采纳,获得10
19秒前
20秒前
远看寒山完成签到,获得积分10
21秒前
追寻平凡完成签到,获得积分20
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
25秒前
nihao完成签到,获得积分20
26秒前
烟花应助wuxunxun2015采纳,获得10
27秒前
卷子卷子发布了新的文献求助10
27秒前
28秒前
阿米完成签到 ,获得积分10
28秒前
干饭宝发布了新的文献求助10
32秒前
猜不猜不发布了新的文献求助10
33秒前
34秒前
34秒前
大模型应助星鱼采纳,获得10
35秒前
35秒前
Rollei应助科研通管家采纳,获得10
35秒前
Rollei应助科研通管家采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734883
求助须知:如何正确求助?哪些是违规求助? 5356945
关于积分的说明 15327966
捐赠科研通 4879384
什么是DOI,文献DOI怎么找? 2621880
邀请新用户注册赠送积分活动 1571089
关于科研通互助平台的介绍 1527872