亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A reprogrammable mechanical metamaterial with stable memory

超材料 计算机科学 材料科学 光电子学
作者
Tian Chen,Mark V. Pauly,Pedro M. Reis
出处
期刊:Nature [Springer Nature]
卷期号:589 (7842): 386-390 被引量:319
标识
DOI:10.1038/s41586-020-03123-5
摘要

Metamaterials are designed to realize exotic physical properties through the geometric arrangement of their underlying structural layout1,2. Traditional mechanical metamaterials achieve functionalities such as a target Poisson's ratio3 or shape transformation4-6 through unit-cell optimization7-9, often with spatial heterogeneity10-12. These functionalities are programmed into the layout of the metamaterial in a way that cannot be altered. Although recent efforts have produced means of tuning such properties post-fabrication13-19, they have not demonstrated mechanical reprogrammability analogous to that of digital devices, such as hard disk drives, in which each unit can be written to or read from in real time as required. Here we overcome this challenge by using a design framework for a tileable mechanical metamaterial with stable memory at the unit-cell level. Our design comprises an array of physical binary elements (m-bits), analogous to digital bits, with clearly delineated writing and reading phases. Each m-bit can be independently and reversibly switched between two stable states (acting as memory) using magnetic actuation to move between the equilibria of a bistable shell20-25. Under deformation, each state is associated with a distinctly different mechanical response that is fully elastic and can be reversibly cycled until the system is reprogrammed. Encoding a set of binary instructions onto the tiled array yields markedly different mechanical properties; specifically, the stiffness and strength can be made to range over an order of magnitude. We expect that the stable memory and on-demand reprogrammability of mechanical properties in this design paradigm will facilitate the development of advanced forms of mechanical metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
9秒前
lixuebin完成签到 ,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
紫紫完成签到 ,获得积分10
1分钟前
小马完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LMH完成签到,获得积分10
1分钟前
1分钟前
姚老表完成签到,获得积分10
1分钟前
1分钟前
jeff完成签到,获得积分10
2分钟前
2分钟前
归尘完成签到,获得积分10
2分钟前
龍一应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得200
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爱静静完成签到,获得积分0
2分钟前
2分钟前
三井库里发布了新的文献求助10
3分钟前
科研通AI5应助三井库里采纳,获得10
3分钟前
FashionBoy应助童谣采纳,获得10
3分钟前
kbcbwb2002完成签到,获得积分10
3分钟前
3分钟前
童谣发布了新的文献求助10
3分钟前
wanci应助小小采纳,获得20
3分钟前
3分钟前
zoerot发布了新的文献求助50
4分钟前
丘比特应助Ade阿德采纳,获得10
4分钟前
4分钟前
4分钟前
zoerot完成签到,获得积分10
4分钟前
fogsea完成签到,获得积分0
4分钟前
VDC应助zoerot采纳,获得30
4分钟前
4分钟前
4分钟前
Ade阿德发布了新的文献求助10
4分钟前
4分钟前
bkagyin应助科研通管家采纳,获得10
4分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477466
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110133
捐赠科研通 2760378
什么是DOI,文献DOI怎么找? 1514880
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604