Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation

超参数 计算机科学 粒子群优化 人工神经网络 分水岭 大洪水 地表径流 均方误差 深度学习 洪水预报 人工智能 循环神经网络 机器学习 环境科学 统计 数学 生物 哲学 神学 生态学
作者
Yuanhao Xu,Caihong Hu,Qiang Wu,Shengqi Jian,Zhichao Li,Youqian Chen,Guodong Zhang,Zhaoxi Zhang,Shu‐Li Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:608: 127553-127553 被引量:186
标识
DOI:10.1016/j.jhydrol.2022.127553
摘要

Flood forecasting is an essential non-engineering measure for flood prevention and disaster reduction. Many models have been developed to study the complex and highly random rainfall-runoff process. In recent years, artificial intelligence methods, such as the artificial neural network (ANN), have attempted to construct rainfall-runoff models. The more advanced deep learning methods of long short-term memory (LSTM) network have been proved to better predict hydrological time series. However, the selection of LSTM hyperparameters in the past mostly relied on the experience of the staff, which often led to failure to achieve the best performance. The aim of this study is to develop a method to improve flood forecast accuracy and lead time. A deep learning neural network model based on LSTM networks and particle swarm optimization (PSO) is proposed in this paper. The PSO algorithm was used to optimize the LSTM hyperparameter to improve the ability to learn data sequence features. The model focuses on the Jingle Watershed in the Fenhe River and the Lushi Watershed in the Luohe River and was used to predict flood processes using rainfall and runoff observation data from stations in the watersheds. We evaluated the performance of the model with the Nash Sutcliffe efficiency coefficient, root mean square error, and bias. The results show that the PSO-LSTM model outperforms the M-EIES, ANN, PSO-ANN, and LSTM at all stations in the watersheds. The PSO-LSTM model improves the flood forecasting accuracy at different lead times, especially for those exceeding 6 h, and has higher prediction accuracy and stability. The PSO-LSTM model could be used to improve accuracy in short-term flood forecast applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
青田101完成签到,获得积分10
2秒前
李爱国应助机灵的成协采纳,获得10
2秒前
Solar energy发布了新的文献求助10
2秒前
nanalalal发布了新的文献求助10
3秒前
精明匪发布了新的文献求助10
3秒前
深情海秋完成签到,获得积分10
3秒前
3秒前
玩命的小翠完成签到,获得积分10
4秒前
健忘的新梅完成签到,获得积分10
4秒前
Hq完成签到,获得积分20
4秒前
5秒前
sweettroye应助十六采纳,获得10
5秒前
超帅的白开水完成签到,获得积分10
5秒前
LienAo完成签到,获得积分10
6秒前
7秒前
安之若素完成签到,获得积分10
7秒前
白笙完成签到,获得积分10
8秒前
大强完成签到,获得积分10
8秒前
晴天完成签到,获得积分10
8秒前
9秒前
伊伊发布了新的文献求助10
9秒前
啊娴仔发布了新的文献求助10
10秒前
10秒前
善学以致用应助北川采纳,获得10
10秒前
10秒前
挽眠发布了新的文献求助30
11秒前
HoHo完成签到,获得积分10
11秒前
芥末奶半糖加冰完成签到,获得积分10
11秒前
今后应助隋磊采纳,获得20
12秒前
12秒前
星寒发布了新的文献求助10
15秒前
天真依玉完成签到,获得积分10
15秒前
斗南无花完成签到 ,获得积分10
16秒前
心想事橙发布了新的文献求助10
16秒前
16秒前
一只小可爱完成签到,获得积分10
18秒前
啊啊啊肥完成签到,获得积分20
19秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919