Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation

超参数 计算机科学 粒子群优化 人工神经网络 分水岭 大洪水 地表径流 均方误差 深度学习 洪水预报 人工智能 循环神经网络 机器学习 环境科学 统计 数学 生物 哲学 神学 生态学
作者
Yuanhao Xu,Caihong Hu,Qiang Wu,Shengqi Jian,Zhichao Li,Youqian Chen,Guodong Zhang,Zhaoxi Zhang,Shu‐Li Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:608: 127553-127553 被引量:186
标识
DOI:10.1016/j.jhydrol.2022.127553
摘要

Flood forecasting is an essential non-engineering measure for flood prevention and disaster reduction. Many models have been developed to study the complex and highly random rainfall-runoff process. In recent years, artificial intelligence methods, such as the artificial neural network (ANN), have attempted to construct rainfall-runoff models. The more advanced deep learning methods of long short-term memory (LSTM) network have been proved to better predict hydrological time series. However, the selection of LSTM hyperparameters in the past mostly relied on the experience of the staff, which often led to failure to achieve the best performance. The aim of this study is to develop a method to improve flood forecast accuracy and lead time. A deep learning neural network model based on LSTM networks and particle swarm optimization (PSO) is proposed in this paper. The PSO algorithm was used to optimize the LSTM hyperparameter to improve the ability to learn data sequence features. The model focuses on the Jingle Watershed in the Fenhe River and the Lushi Watershed in the Luohe River and was used to predict flood processes using rainfall and runoff observation data from stations in the watersheds. We evaluated the performance of the model with the Nash Sutcliffe efficiency coefficient, root mean square error, and bias. The results show that the PSO-LSTM model outperforms the M-EIES, ANN, PSO-ANN, and LSTM at all stations in the watersheds. The PSO-LSTM model improves the flood forecasting accuracy at different lead times, especially for those exceeding 6 h, and has higher prediction accuracy and stability. The PSO-LSTM model could be used to improve accuracy in short-term flood forecast applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
doctor fighting完成签到,获得积分10
1秒前
wdy111应助飞0802采纳,获得20
1秒前
1秒前
2秒前
英俊的铭应助ccccccp采纳,获得10
2秒前
2秒前
年年完成签到,获得积分10
2秒前
innocent完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Zhanghh87完成签到,获得积分10
3秒前
yaochuan完成签到,获得积分10
4秒前
5秒前
Ava应助qq16采纳,获得20
5秒前
西瓜ovo完成签到,获得积分10
5秒前
ninicwang完成签到,获得积分10
6秒前
明小丽发布了新的文献求助20
6秒前
火龙果发布了新的文献求助10
7秒前
8秒前
小雯完成签到 ,获得积分10
8秒前
芝士发布了新的文献求助10
8秒前
8秒前
勤奋幻柏发布了新的文献求助10
8秒前
9秒前
panjunlu发布了新的文献求助10
10秒前
10秒前
10秒前
华仔应助lixm采纳,获得10
10秒前
10秒前
冷酷严青发布了新的文献求助10
11秒前
闪闪的从彤完成签到,获得积分10
11秒前
11秒前
迅速海云完成签到,获得积分10
11秒前
顾矜应助万嘉俊采纳,获得10
12秒前
默默若枫完成签到,获得积分10
12秒前
在水一方应助小李胖采纳,获得10
12秒前
原鑫完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600