超级电容器
材料科学
碳化
活性炭
循环伏安法
介电谱
比表面积
纳米纤维
氢氧化钾
化学工程
碳纳米纤维
电化学
法拉第效率
扫描电子显微镜
电极
纳米技术
复合材料
碳纳米管
化学
吸附
有机化学
催化作用
物理化学
工程类
作者
Mandeep Singh,Ashish Gupta,Shashank Sundriyal,Prashant Dubey,Karishma Jain,Sanjay R. Dhakate
标识
DOI:10.1016/j.est.2022.104193
摘要
The present investigation, reports the performance of ultra-flexible activated carbon nanofiber mats (ACNF) as an electrode for all-solid-state supercapacitor application in comparison to activated carbon (AC). AC and ACNF were fabricated by pre-carbonization at 600 °C followed by activation using potassium hydroxide (KOH) at 800 °C. Crushed carbon nanofibers (CA-CNF) were prepared by first crushing the pre-carbonized nanofiber mat, followed by KOH activation. These prepared candidates for the supercapacitor electrodes were characterized and compared using Scanning electron microcopy (SEM) and Brunauer, Emmett and Teller (BET) analysis for morphological, surface area, and porosity differences. Along with these, Raman spectroscopy and I-V studies were carried out to get information about sp2 carbon. Cyclic Voltammetry (CV), Galvanostatic charge-discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) studies were performed to compare the electrochemical performance of the AC, CA-CNF, and ACNF as electrodes materials for supercapacitors. Among these electrodes, the ACNF mat demonstrates a higher specific capacitance of 203.29 F/g as compared to AC (106.17 F/g) and CA-CNF (166.12 F/g) at the same current density of 1 A/g. Furthermore, an all-solid-state supercapacitor device was fabricated using an ACNF mat due to its high flexibility, stand-alone character, and excellent performance as an electrode. The device exhibits a high energy density of 65.52 Wh/kg and a power density of 1036.27 W/kg with high coulombic efficiency (99.6%) after 10,000 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI