Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning

深度学习 计算机科学 人工智能 预处理器 无监督学习 聚类分析 机器学习 特征提取 监督学习 数据预处理 模式识别(心理学) 人工神经网络
作者
Nosheen Abid,Muhammad Imran Malik,Muhammad Shahzad,Faisal Shafait,Haider Ali,Muhammad Mohsin Ghaffar,Christian Weis,Norbert Wehn,Marcus Liwicki
标识
DOI:10.1109/dicta52665.2021.9647174
摘要

Massive wildfires not only in Australia, but also worldwide are burning millions of hectares of forests and green land affecting the social, ecological, and economical situation. Widely used indices-based threshold methods like Normalized Burned Ratio (NBR) require a huge amount of data preprocessing and are specific to the data capturing source. State-of-the-art deep learning models, on the other hand, are supervised and require domain experts knowledge for labeling the data in huge quantity. These limitations make the existing models difficult to be adaptable to new variations in the data and capturing sources. In this work, we have proposed an unsupervised deep learning based architecture to map the burnt regions of forests by learning features progressively. The model considers small patches of satellite imagery and classifies them into burnt and not burnt. These small patches are concatenated into binary masks to segment out the burnt region of the forests. The proposed system is composed of two modules: 1) a state-of-the-art deep learning architecture for feature extraction and 2) a clustering algorithm for the generation of pseudo labels to train the deep learning architecture. The proposed method is capable of learning the features progressively in an unsupervised fashion from the data with pseudo labels, reducing the exhausting efforts of data labeling that requires expert knowledge. We have used the realtime data of Sentinel-2 for training the model and mapping the burnt regions. The obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
悄悄是心上的肖肖完成签到 ,获得积分10
6秒前
aslink应助认真白云采纳,获得10
7秒前
7秒前
8秒前
安然发布了新的文献求助10
9秒前
10秒前
淡定从霜发布了新的文献求助10
10秒前
日升月发布了新的文献求助10
11秒前
NexusExplorer应助yuhang采纳,获得10
12秒前
如意半青发布了新的文献求助10
14秒前
14秒前
小白发布了新的文献求助10
14秒前
ting20170208发布了新的文献求助10
15秒前
顾矜应助zhzh0618采纳,获得10
15秒前
Hcw0525完成签到,获得积分10
17秒前
赘婿应助小先生采纳,获得10
17秒前
学医自救完成签到,获得积分10
18秒前
19秒前
Hcw0525发布了新的文献求助10
19秒前
yuhang完成签到,获得积分10
19秒前
李健应助lgx采纳,获得10
21秒前
qiao完成签到,获得积分10
21秒前
一枝梅花鹿完成签到,获得积分10
22秒前
深情安青应助小白采纳,获得10
22秒前
23秒前
hyx9504发布了新的文献求助20
24秒前
26秒前
27秒前
28秒前
982289172发布了新的文献求助10
28秒前
卜哥完成签到,获得积分10
29秒前
lili完成签到,获得积分10
31秒前
游戏人间发布了新的文献求助10
31秒前
32秒前
Hosea发布了新的文献求助10
32秒前
小小鱼发布了新的文献求助10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466497
求助须知:如何正确求助?哪些是违规求助? 3059297
关于积分的说明 9065872
捐赠科研通 2749797
什么是DOI,文献DOI怎么找? 1508699
科研通“疑难数据库(出版商)”最低求助积分说明 697013
邀请新用户注册赠送积分活动 696838