Dementia ConnEEGtome: Towards multicentric harmonization of EEG connectivity in neurodegeneration

脑电图 计算机科学 痴呆 工作流程 管道(软件) 神经认知 人工智能 神经影像学 机器学习 认知 心理学 神经科学 医学 数据库 病理 程序设计语言 疾病
作者
Pavel Prado,Agustina Birba,Josephine Cruzat,Hernando Santamaría-García,Mario A. Parra,Sebastian Moguilner,Enzo Tagliazucchi,Agustín Ibáñez
出处
期刊:International Journal of Psychophysiology [Elsevier]
卷期号:172: 24-38 被引量:12
标识
DOI:10.1016/j.ijpsycho.2021.12.008
摘要

The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic "ConnEEGtome" in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. "Ground truths" for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助酷炫的鸡翅采纳,获得10
1秒前
xuxuxu发布了新的文献求助10
1秒前
田様应助66ds采纳,获得10
1秒前
1秒前
岁安安安完成签到,获得积分10
2秒前
2秒前
dawnn发布了新的文献求助30
3秒前
ffddsdc完成签到,获得积分20
3秒前
酷波er应助梁超采纳,获得10
4秒前
5秒前
woshizy完成签到,获得积分10
5秒前
5秒前
FashionBoy应助倩倩采纳,获得10
5秒前
6秒前
斯文败类应助xxxy采纳,获得10
6秒前
大意的罡发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
今后应助00000采纳,获得10
8秒前
woshizy发布了新的文献求助10
8秒前
10秒前
zhouyi发布了新的文献求助10
10秒前
xuxuxu完成签到,获得积分10
10秒前
李健的小迷弟应助Lp采纳,获得10
10秒前
Lze发布了新的文献求助10
11秒前
劲秉应助巴达天使采纳,获得10
11秒前
66ds发布了新的文献求助10
11秒前
11秒前
周周发布了新的文献求助10
12秒前
桐桐应助xsq采纳,获得10
13秒前
14秒前
14秒前
Luo发布了新的文献求助10
16秒前
yiyi发布了新的文献求助10
16秒前
hd发布了新的文献求助10
16秒前
赘婿应助ffddsdc采纳,获得10
16秒前
Isi完成签到,获得积分10
16秒前
19秒前
zzzzz发布了新的文献求助30
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475840
求助须知:如何正确求助?哪些是违规求助? 3067547
关于积分的说明 9104650
捐赠科研通 2759116
什么是DOI,文献DOI怎么找? 1513963
邀请新用户注册赠送积分活动 699928
科研通“疑难数据库(出版商)”最低求助积分说明 699204