High-Properties electrochromic device based on TiO2@Graphene/Prussian blue Core-Shell nanostructures

电致变色 X射线光电子能谱 普鲁士蓝 材料科学 纳米结构 纳米技术 纳米棒 石墨烯 电解质 化学工程 光电子学 电极 电化学 化学 工程类 物理化学
作者
Yingeng Wang,Zhiming Gong,Yi Zeng,Hongli Zhao,Jingkai Yang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 134066-134066 被引量:34
标识
DOI:10.1016/j.cej.2021.134066
摘要

Herein, the successful preparation of a high-performance electrochromic device (ECD) with the [email protected]/PB core–shell nanostructure as the electrode has been described. The core–shell nanostructure was formed by wrapping graphene (G) and growing Prussian blue (PB) on the TiO2 nanorod array (TNRA) through the two-step hydrothermal and spin coating method. The existence state of elemental iron (Fe) and the evolution of the PB growth layer were studied by X-ray photoelectron spectroscopy (XPS) depth profiles. In addition, a model of K+ diffusion and electron transport in the ECDs was proposed to explain the mechanism of the enhanced electrochromic property of the [email protected]/PB core–shell nanostructures. The TNRA as a support template is conducive to electrolyte penetration and rapid ion replenishment to active sites. At the same time, the porous structure can alleviate the volume expansion during the electrical cycle which will increase the cycle stability of ECDs. G acts as a bridge between the conductive and active layer and can reduce the loss of electrons between interfaces in the transport process. It provides a fast transport channel for electrons and promotes the rapid response of electrochromism. Compared with ECDs based on the traditional PB film, [email protected]/PB core–shell nanostructures achieve a higher optical modulation range (56.1%) and a shorter switching time (tc/tb = 1.0/2.8 s). In particular, the coloration efficiency (CE) has been significantly increased to 129.1 cm2/C at a wavelength of 700 nm, which shows a promising application in high-performance ECDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好事发生666完成签到,获得积分10
1秒前
Alina1874发布了新的文献求助10
2秒前
DZQ发布了新的文献求助10
2秒前
三好学生发布了新的文献求助10
3秒前
盐植物完成签到,获得积分10
3秒前
ZJPPPP发布了新的文献求助10
3秒前
3秒前
3秒前
mafukairi应助Clarence采纳,获得10
4秒前
完美世界应助郑旭辉采纳,获得10
5秒前
5秒前
Akim应助fancy采纳,获得10
6秒前
6秒前
rjy完成签到 ,获得积分10
6秒前
南浔完成签到,获得积分20
6秒前
阿梦完成签到,获得积分10
7秒前
sunyafei完成签到,获得积分10
7秒前
coco发布了新的文献求助10
7秒前
完美世界应助无心的土豆采纳,获得10
9秒前
稚气满满发布了新的文献求助30
9秒前
10秒前
Elena发布了新的文献求助10
10秒前
11秒前
11秒前
yiqi完成签到,获得积分10
11秒前
电致阿光完成签到,获得积分10
13秒前
郑旭辉完成签到,获得积分20
13秒前
YOLK97完成签到,获得积分10
13秒前
苹果柜子完成签到,获得积分10
13秒前
彭哒哒完成签到,获得积分20
13秒前
silong发布了新的文献求助10
14秒前
海的终章完成签到,获得积分10
14秒前
14秒前
龙1发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
17秒前
徐蝶关注了科研通微信公众号
17秒前
小二郎应助123采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552436
求助须知:如何正确求助?哪些是违规求助? 3128534
关于积分的说明 9378502
捐赠科研通 2827678
什么是DOI,文献DOI怎么找? 1554508
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714961