亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Science+Business Media]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
PAIDAXXXX完成签到,获得积分10
5秒前
崔无敌发布了新的文献求助10
13秒前
领导范儿应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
Lisa完成签到,获得积分10
20秒前
梦里花落声应助青争采纳,获得10
20秒前
咸鱼完成签到 ,获得积分10
21秒前
小蘑菇完成签到 ,获得积分10
22秒前
30秒前
乐观生活发布了新的文献求助10
39秒前
科研通AI5应助LiJie采纳,获得10
42秒前
久伴终难入她心完成签到,获得积分10
45秒前
SciGPT应助二项式定理采纳,获得10
59秒前
chaoshen完成签到,获得积分10
1分钟前
不周发布了新的文献求助10
1分钟前
白木完成签到,获得积分10
1分钟前
领导范儿应助花谢采纳,获得10
1分钟前
1分钟前
1分钟前
张志超发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
牛初辰完成签到 ,获得积分10
1分钟前
LiJie发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
花谢发布了新的文献求助10
1分钟前
1分钟前
二项式定理完成签到,获得积分20
1分钟前
RR发布了新的文献求助10
1分钟前
忐忑的果汁完成签到 ,获得积分10
1分钟前
mm完成签到 ,获得积分10
1分钟前
vicky完成签到 ,获得积分10
1分钟前
LiJie完成签到,获得积分10
1分钟前
Lynny完成签到 ,获得积分0
1分钟前
ethanxiang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253758
求助须知:如何正确求助?哪些是违规求助? 4417024
关于积分的说明 13750850
捐赠科研通 4289506
什么是DOI,文献DOI怎么找? 2353515
邀请新用户注册赠送积分活动 1350223
关于科研通互助平台的介绍 1310219