已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Science+Business Media]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活泼的磬完成签到,获得积分10
2秒前
2秒前
李健应助无辜的秀采纳,获得10
2秒前
爆米花应助不会起名采纳,获得10
3秒前
城市公园发布了新的文献求助10
4秒前
盼夏完成签到 ,获得积分10
4秒前
5秒前
今夕何夕发布了新的文献求助10
6秒前
龅牙苏发布了新的文献求助10
8秒前
西瓜汁完成签到,获得积分10
8秒前
猪猪hero应助活泼的磬采纳,获得10
10秒前
gorgeousgaga完成签到,获得积分10
11秒前
汉堡包应助城市公园采纳,获得10
11秒前
good233发布了新的文献求助10
12秒前
健忘的向秋完成签到,获得积分10
16秒前
李爱国应助生动宛筠采纳,获得10
16秒前
大个应助大白采纳,获得10
18秒前
wanci应助大白采纳,获得10
18秒前
18秒前
19秒前
酷酷的冰真应助kyo采纳,获得10
20秒前
20秒前
21秒前
jailbreaker完成签到 ,获得积分0
21秒前
21秒前
zz发布了新的文献求助10
22秒前
海贼学术完成签到 ,获得积分10
22秒前
zjy完成签到,获得积分10
23秒前
黄炜柏呵呵关注了科研通微信公众号
23秒前
红日未央完成签到,获得积分10
23秒前
残忆完成签到 ,获得积分10
23秒前
23秒前
达布溜发布了新的文献求助10
24秒前
执着的冬瓜完成签到 ,获得积分10
24秒前
13508104971发布了新的文献求助10
24秒前
高高安白发布了新的文献求助10
26秒前
红日未央发布了新的文献求助10
26秒前
26秒前
X悦发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021