Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zeannezg完成签到 ,获得积分10
刚刚
1秒前
枫糖叶落完成签到,获得积分10
3秒前
Lucky.完成签到 ,获得积分0
4秒前
lululu完成签到 ,获得积分10
6秒前
知性的夏槐完成签到 ,获得积分10
6秒前
哈哈李完成签到,获得积分10
7秒前
小奇曲饼完成签到 ,获得积分10
7秒前
7秒前
misa完成签到 ,获得积分10
8秒前
ning_qing完成签到 ,获得积分10
9秒前
甜甜醉波完成签到,获得积分10
9秒前
善良的冷梅完成签到,获得积分10
9秒前
yywang关注了科研通微信公众号
9秒前
9秒前
Dlan完成签到,获得积分10
10秒前
呆萌井完成签到,获得积分10
10秒前
11秒前
鉴湖完成签到,获得积分10
11秒前
001完成签到,获得积分10
11秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
11秒前
efengmo完成签到,获得积分10
12秒前
天真南松完成签到,获得积分10
13秒前
讨厌下雨天完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
lii完成签到,获得积分10
17秒前
哦哦完成签到,获得积分10
18秒前
ninomae完成签到 ,获得积分10
21秒前
渴望者完成签到,获得积分10
21秒前
lzl007完成签到 ,获得积分10
22秒前
只争朝夕完成签到,获得积分10
24秒前
yin完成签到,获得积分10
24秒前
abbytang完成签到 ,获得积分10
24秒前
优雅沛文完成签到 ,获得积分10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
sjw525完成签到,获得积分10
26秒前
小公牛完成签到 ,获得积分10
28秒前
李正纲完成签到 ,获得积分10
29秒前
Criminology34应助1101592875采纳,获得10
34秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590