亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peter完成签到,获得积分10
刚刚
一休完成签到,获得积分10
3秒前
Earr完成签到 ,获得积分10
20秒前
烟花应助做不出来采纳,获得10
27秒前
orixero应助动听衬衫采纳,获得10
28秒前
Earr关注了科研通微信公众号
32秒前
爆米花应助小笛子采纳,获得10
45秒前
51秒前
54秒前
做不出来发布了新的文献求助10
56秒前
小笛子发布了新的文献求助10
1分钟前
zb1010完成签到,获得积分10
1分钟前
Meng完成签到,获得积分10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
Lucas应助sauncaiyu采纳,获得10
1分钟前
温wen完成签到,获得积分10
1分钟前
猴面包树完成签到,获得积分10
1分钟前
辣椒油完成签到,获得积分10
1分钟前
猴面包树发布了新的文献求助10
1分钟前
1分钟前
lzy发布了新的文献求助10
1分钟前
王者归来完成签到,获得积分10
2分钟前
碧蓝皮卡丘完成签到,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
3分钟前
3分钟前
sauncaiyu发布了新的文献求助10
3分钟前
小蘑菇应助石榴汁的书采纳,获得10
3分钟前
汪鸡毛完成签到 ,获得积分10
3分钟前
caca完成签到,获得积分0
3分钟前
浮游应助朱志伟采纳,获得10
3分钟前
sauncaiyu完成签到,获得积分10
3分钟前
浮游应助朱志伟采纳,获得10
3分钟前
mathmotive完成签到,获得积分10
4分钟前
sean完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
朱志伟完成签到,获得积分10
4分钟前
我是老大应助石榴汁的书采纳,获得10
4分钟前
flyinthesky完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401356
求助须知:如何正确求助?哪些是违规求助? 4520217
关于积分的说明 14079296
捐赠科研通 4433464
什么是DOI,文献DOI怎么找? 2434125
邀请新用户注册赠送积分活动 1426281
关于科研通互助平台的介绍 1404925