已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
刚刚
Xuhhh发布了新的文献求助10
2秒前
2秒前
王不留行完成签到 ,获得积分10
2秒前
一米阳光完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
哈基米德应助科研通管家采纳,获得20
6秒前
田様应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
6秒前
DocM完成签到 ,获得积分10
6秒前
YYYhl发布了新的文献求助10
6秒前
ymm完成签到,获得积分10
7秒前
伏远梦发布了新的文献求助10
9秒前
9秒前
Yang_728发布了新的文献求助10
10秒前
无风风完成签到 ,获得积分10
15秒前
ATEVYG完成签到 ,获得积分10
15秒前
常绝山完成签到 ,获得积分10
16秒前
w。完成签到 ,获得积分10
17秒前
chy完成签到 ,获得积分10
18秒前
fifi完成签到,获得积分10
20秒前
呆萌的谷波完成签到,获得积分10
20秒前
深情安青应助上岸的风采纳,获得10
21秒前
Brilliant完成签到,获得积分10
22秒前
靓丽傲玉完成签到 ,获得积分10
22秒前
22秒前
24秒前
kongxiaofan发布了新的文献求助10
25秒前
25秒前
ybbb完成签到 ,获得积分10
26秒前
hx发布了新的文献求助10
26秒前
27秒前
30秒前
31秒前
鸣风发布了新的文献求助10
31秒前
西瓜刀发布了新的文献求助10
32秒前
无风完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538374
求助须知:如何正确求助?哪些是违规求助? 4625516
关于积分的说明 14596112
捐赠科研通 4566095
什么是DOI,文献DOI怎么找? 2502975
邀请新用户注册赠送积分活动 1481266
关于科研通互助平台的介绍 1452503