Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Nature]
被引量:2
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助天才包采纳,获得10
1秒前
1秒前
Steven完成签到,获得积分10
2秒前
2秒前
共享精神应助慕灵薇采纳,获得10
3秒前
3秒前
weiyi发布了新的文献求助10
4秒前
HelenZ完成签到,获得积分10
4秒前
5秒前
大大小小发布了新的文献求助10
5秒前
小红发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助白小黑采纳,获得10
6秒前
共享精神应助明亮白筠采纳,获得30
7秒前
可靠访蕊完成签到 ,获得积分10
8秒前
9秒前
HelenZ发布了新的文献求助10
9秒前
10秒前
10秒前
不挂科的人完成签到,获得积分20
11秒前
Yara.H发布了新的文献求助10
11秒前
12秒前
13秒前
caohai发布了新的文献求助10
15秒前
zzzz发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
爱静静应助11111111112采纳,获得10
18秒前
19秒前
21秒前
传奇3应助朤朤采纳,获得10
21秒前
21秒前
caohai完成签到,获得积分10
21秒前
lq完成签到,获得积分20
22秒前
22秒前
444发布了新的文献求助10
22秒前
LLLLL发布了新的文献求助10
22秒前
HelenZ发布了新的文献求助10
23秒前
乐乐应助温暖的颜演采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302738
求助须知:如何正确求助?哪些是违规求助? 2937103
关于积分的说明 8480454
捐赠科研通 2610996
什么是DOI,文献DOI怎么找? 1425486
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646746