Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Nature]
卷期号:339 (1-2): 261-295 被引量:3
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyj发布了新的文献求助10
刚刚
细腻的麦片完成签到,获得积分20
1秒前
1秒前
君君完成签到,获得积分10
2秒前
cchen0902完成签到,获得积分10
2秒前
Sara发布了新的文献求助10
2秒前
2秒前
干饭闪电狼完成签到,获得积分10
3秒前
YUZU完成签到,获得积分10
4秒前
123完成签到,获得积分10
5秒前
pcx完成签到,获得积分10
5秒前
phd完成签到,获得积分10
6秒前
6秒前
曹志毅完成签到,获得积分10
6秒前
mito发布了新的文献求助10
7秒前
无悔呀发布了新的文献求助10
7秒前
8秒前
君君发布了新的文献求助10
8秒前
Yang完成签到,获得积分10
9秒前
风雨完成签到,获得积分10
9秒前
9秒前
10秒前
彭于晏应助小西采纳,获得30
10秒前
可爱的函函应助布布采纳,获得10
11秒前
12秒前
轩辕德地发布了新的文献求助10
12秒前
nine发布了新的文献求助30
12秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
13秒前
JamesPei应助小敦采纳,获得10
13秒前
今非发布了新的文献求助10
13秒前
李健的小迷弟应助通~采纳,获得30
13秒前
13秒前
13秒前
fanfan44390发布了新的文献求助10
13秒前
Zhang完成签到,获得积分10
14秒前
小二郎应助小田采纳,获得10
15秒前
15秒前
隐形曼青应助liike采纳,获得10
15秒前
phd发布了新的文献求助10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794