已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Science+Business Media]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
zhb1998发布了新的文献求助10
3秒前
木小叶发布了新的文献求助10
4秒前
贝妮戴塔发布了新的文献求助20
5秒前
LLL发布了新的文献求助10
5秒前
star应助小么小采纳,获得10
5秒前
丘比特应助夏依瑶采纳,获得30
6秒前
乙酰水杨酸完成签到,获得积分10
7秒前
TIPHA发布了新的文献求助10
9秒前
10秒前
13秒前
蒋蒋蒋蒋发布了新的文献求助10
13秒前
幸福的含灵完成签到,获得积分10
13秒前
15秒前
深情安青应助陈益凡采纳,获得10
15秒前
15秒前
linda完成签到,获得积分10
15秒前
桐桐应助完美外绣采纳,获得10
16秒前
16秒前
充电宝应助TIPHA采纳,获得10
16秒前
大个应助XIAO QIANG采纳,获得30
16秒前
18秒前
19秒前
万能图书馆应助烟消云散采纳,获得10
20秒前
linda发布了新的文献求助10
20秒前
青年才俊发布了新的文献求助10
21秒前
爆米花应助麦芽采纳,获得10
21秒前
23秒前
24秒前
jasonjiang完成签到 ,获得积分0
25秒前
26秒前
27秒前
Q哈哈哈发布了新的文献求助10
28秒前
酷波er应助linda采纳,获得30
28秒前
29秒前
WXM发布了新的文献求助10
29秒前
xcc完成签到 ,获得积分10
29秒前
Xieyijing应助Alex采纳,获得10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822