Multichannel convolution neural network for gas mixture classification

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 初始化 人工神经网络 机器学习 数据挖掘 程序设计语言
作者
YongKyung Oh,Chiehyeon Lim,Junghye Lee,Sewon Kim,Sungil Kim
出处
期刊:Annals of Operations Research [Springer Science+Business Media]
卷期号:339 (1-2): 261-295 被引量:4
标识
DOI:10.1007/s10479-022-04715-2
摘要

Concomitant with people beginning to understand their legal rights or entitlement to complain, complaints of offensive odors and smell pollution have increased significantly. Consequently, monitoring gases and identifying their types and causes in real time has become a critical issue in the modern world. In particular, toxic gases that may be generated at industrial sites or odors in daily life consist of hybrid gases made up of various chemicals. Understanding the types and characteristics of these mixed gases is an important issue in many areas. However, mixed gas classification is challenging because the gas sensor arrays for mixed gases must process complex nonlinear high-dimensional data. In addition, obtaining sufficient training data is expensive. To overcome these challenges, this paper proposes a novel method for mixed gas classification based on analogous image representations with multiple sensor-specific channels and a convolutional neural network (CNN) classifier. The proposed method maps a gas sensor array into a multichannel image with data augmentation, and then utilizes a CNN for feature extraction from such images. The proposed method was validated using public mixture gas data from the UCI machine learning repository and real laboratory experiments. The experimental results indicate that it outperforms the existing classification approaches in terms of the balanced accuracy and weighted F1 scores. Additionally, we evaluated the performance of the proposed method in various experimental settings in terms of data representation, data augmentation, and parameter initialization, so that practitioners can easily apply it to artificial olfactory systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
少盐完成签到,获得积分10
1秒前
刻苦牛马完成签到 ,获得积分10
2秒前
2秒前
Cold发布了新的文献求助10
3秒前
好奇小怪发布了新的文献求助10
4秒前
5秒前
6秒前
SciGPT应助四糸乃采纳,获得10
7秒前
愉快日记本完成签到,获得积分10
7秒前
执着绿草发布了新的文献求助10
7秒前
8秒前
10秒前
完美世界应助lianliyou采纳,获得10
10秒前
深情安青应助xieyuanxing采纳,获得10
10秒前
11秒前
11秒前
hhan完成签到,获得积分10
11秒前
NexusExplorer应助星河在眼里采纳,获得10
12秒前
李健的小迷弟应助xiaomi采纳,获得10
12秒前
12秒前
12秒前
木子完成签到,获得积分10
13秒前
邺yu完成签到,获得积分10
14秒前
li发布了新的文献求助10
14秒前
Cecilia完成签到,获得积分10
14秒前
15秒前
请及时确认完成签到,获得积分10
16秒前
16秒前
Arshur完成签到,获得积分20
16秒前
姜姜完成签到,获得积分10
17秒前
17秒前
kk完成签到,获得积分10
18秒前
李健应助BBrian采纳,获得10
18秒前
乐观发布了新的文献求助10
18秒前
小艺发布了新的文献求助10
18秒前
qqy发布了新的文献求助10
18秒前
mingyu发布了新的文献求助10
18秒前
19秒前
遇上就这样吧应助hhan采纳,获得20
19秒前
淡然鸡翅完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633293
求助须知:如何正确求助?哪些是违规求助? 4029304
关于积分的说明 12466863
捐赠科研通 3715514
什么是DOI,文献DOI怎么找? 2050190
邀请新用户注册赠送积分活动 1081753
科研通“疑难数据库(出版商)”最低求助积分说明 964055