已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sentiment Analysis of Social Media Data using Fuzzy-Rough Set Classifier for the Prediction of the Presidential Election

情绪分析 人工智能 分类器(UML) 计算机科学 粗集 机器学习 模糊集 社会化媒体 模糊逻辑 自然语言处理 数据挖掘 万维网
作者
Suresha Perera,Kasun Karunanayaka
标识
DOI:10.1109/icarc54489.2022.9754173
摘要

As an interdisciplinary research field, sentiment analysis is one of the momentous applications in Natural Language Processing, for quantifying the emotional value in vast data in the form of text available in social media networks to gain an understanding of the attitudes, opinions, and emotions expressed. There is a great deal of literature on the various approaches to address sentiment analysis with social media and this research focuses on Machine Learning techniques with Twitter data analysis. Special attention is drawn towards the classifiers based on the Fuzzy Set and Rough Set approach which are two powerful mathematical components of computational intelligence with its new dimension involved in the field of sentiment analysis. However, there is a minimal number of review papers discussing rough-fuzzy classifier involvement in sentiment analysis and there is a plethora of work that must be done with text mining in natural language processing. The mission of this study is to develop a sentiment-based classifier using machine learning and fuzzy-rough set theory. Further, it carries automatic sentiment classification with Twitter corpus collected during September 1st and November 15th, 2019 (two months before the election) regarding the case study for the prediction of results at the presidential election 2019, Sri Lanka. The fuzzy rough classifier is developed using the Fuzzy Rough Nearest Neighbor algorithm. The accuracy of the fuzzy rough set-based classifier is higher compared to other classifiers. The actual results of the presidential election of 2019 are tally with the predicted results of the classifier. Therefore, the current state of the art for the prediction of political sentiment with microblogging is probable with the social media data as witnessed with this case study and this can be used in other cases as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助zkwgly采纳,获得10
1秒前
吉吉无名发布了新的文献求助10
1秒前
周韶华发布了新的文献求助10
2秒前
3秒前
dream177777发布了新的文献求助10
3秒前
ma完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
潇洒的千山完成签到,获得积分10
6秒前
wanci应助爱科研采纳,获得10
6秒前
M777发布了新的文献求助10
6秒前
wxy完成签到 ,获得积分20
7秒前
Gtty发布了新的文献求助10
7秒前
yuaner发布了新的文献求助10
8秒前
某丞完成签到,获得积分10
9秒前
potato_bel发布了新的文献求助10
11秒前
梁朝伟应助拼搏小丸子采纳,获得10
11秒前
吉吉无名完成签到,获得积分10
12秒前
12秒前
13秒前
sci女工应助小xx采纳,获得10
14秒前
16秒前
Ying发布了新的文献求助10
17秒前
Lucas应助热塑性哈士奇采纳,获得10
18秒前
18秒前
星辰大海应助活泼的青梦采纳,获得10
19秒前
20秒前
Gtty完成签到,获得积分10
22秒前
调皮汽车完成签到 ,获得积分10
22秒前
23秒前
777发布了新的文献求助10
23秒前
potato_bel完成签到,获得积分10
24秒前
嘿嘿完成签到,获得积分10
24秒前
爱科研发布了新的文献求助10
24秒前
可爱的函函应助Kaiser采纳,获得10
25秒前
26秒前
26秒前
Ferry发布了新的文献求助10
26秒前
Dr大壮发布了新的文献求助10
29秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171276
求助须知:如何正确求助?哪些是违规求助? 2822139
关于积分的说明 7938382
捐赠科研通 2482666
什么是DOI,文献DOI怎么找? 1322693
科研通“疑难数据库(出版商)”最低求助积分说明 633708
版权声明 602627