Automatic estimation of rice grain number based on a convolutional neural network

卷积神经网络 计算机科学 粮食产量 均方误差 人工智能 数学 模式识别(心理学) 农学 统计 生物系统 生物
作者
Deng Ruoling,Long Hao Qi,Weijie Pan,Zhiqi Wang,Dengbin Fu,Xiuli Yang
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:39 (6): 1034-1034
标识
DOI:10.1364/josaa.459580
摘要

The grain number on the rice panicle, which directly determines the rice yield, is a very important agronomic trait in rice breeding and yield-related research. However, manual counting of grain number per rice panicle is time-consuming, error-prone, and laborious. In this study, a novel prototype, dubbed the "GN-System," was developed for the automatic calculation of grain number per rice panicle based on a deep convolutional neural network. First, a whole panicle grain detection (WPGD) model was established using the Cascade R-CNN method embedded with the feature pyramid network for grain recognition and location. Then, a GN-System integrated with the WPGD model was developed to automatically calculate grain number per rice panicle. The performance of the GN-System was evaluated through estimated stability and accuracy. One hundred twenty-four panicle samples were tested to evaluate the estimated stability of the GN-System. The results showed that the coefficient of determination (R2) was 0.810, the mean absolute percentage error was 8.44%, and the root mean square error was 16.73. Also, another 12 panicle samples were tested to further evaluate the estimated accuracy of the GN-System. The results revealed that the mean accuracy of the GN-System reached 90.6%. The GN-System, which can quickly and accurately predict the grain number per rice panicle, can provide an effective, convenient, and low-cost tool for yield evaluation, crop breeding, and genetic research. It also has great potential in assisting phenotypic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
diu发布了新的文献求助10
1秒前
1秒前
着急的果汁完成签到 ,获得积分10
2秒前
2秒前
2秒前
上官若男应助橘子采纳,获得10
2秒前
7秒前
TQY发布了新的文献求助10
8秒前
刘蓓蓓发布了新的文献求助10
9秒前
善学以致用应助huohuo采纳,获得10
9秒前
不说再见完成签到,获得积分10
9秒前
zhonglv7应助喜悦白卉采纳,获得10
9秒前
10秒前
小阿博发布了新的文献求助10
10秒前
小二郎应助优雅的老姆采纳,获得10
12秒前
含蓄的卿完成签到,获得积分20
13秒前
13秒前
Gin完成签到,获得积分10
14秒前
charint发布了新的文献求助10
14秒前
iNk应助齐嘉懿采纳,获得10
16秒前
deer发布了新的文献求助10
17秒前
563998332完成签到,获得积分10
17秒前
我是老大应助强健的成协采纳,获得10
18秒前
Akim应助Skywalker采纳,获得30
18秒前
刘强完成签到,获得积分10
20秒前
24秒前
川桜完成签到,获得积分10
24秒前
cy完成签到 ,获得积分10
24秒前
辛勤的刺猬完成签到 ,获得积分10
25秒前
光亮未来完成签到,获得积分10
26秒前
Zone完成签到 ,获得积分10
26秒前
燚槿发布了新的文献求助10
27秒前
27秒前
田様应助YY采纳,获得10
28秒前
31秒前
31秒前
Richard完成签到,获得积分10
31秒前
Sunrise完成签到,获得积分10
31秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283