Automatic estimation of rice grain number based on a convolutional neural network

卷积神经网络 计算机科学 粮食产量 均方误差 人工智能 数学 模式识别(心理学) 农学 统计 生物系统 生物
作者
Deng Ruoling,Long Hao Qi,Weijie Pan,Zhiqi Wang,Dengbin Fu,Xiuli Yang
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:39 (6): 1034-1034
标识
DOI:10.1364/josaa.459580
摘要

The grain number on the rice panicle, which directly determines the rice yield, is a very important agronomic trait in rice breeding and yield-related research. However, manual counting of grain number per rice panicle is time-consuming, error-prone, and laborious. In this study, a novel prototype, dubbed the "GN-System," was developed for the automatic calculation of grain number per rice panicle based on a deep convolutional neural network. First, a whole panicle grain detection (WPGD) model was established using the Cascade R-CNN method embedded with the feature pyramid network for grain recognition and location. Then, a GN-System integrated with the WPGD model was developed to automatically calculate grain number per rice panicle. The performance of the GN-System was evaluated through estimated stability and accuracy. One hundred twenty-four panicle samples were tested to evaluate the estimated stability of the GN-System. The results showed that the coefficient of determination (R2) was 0.810, the mean absolute percentage error was 8.44%, and the root mean square error was 16.73. Also, another 12 panicle samples were tested to further evaluate the estimated accuracy of the GN-System. The results revealed that the mean accuracy of the GN-System reached 90.6%. The GN-System, which can quickly and accurately predict the grain number per rice panicle, can provide an effective, convenient, and low-cost tool for yield evaluation, crop breeding, and genetic research. It also has great potential in assisting phenotypic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PP完成签到,获得积分10
1秒前
李霞发布了新的文献求助10
1秒前
mango524完成签到,获得积分10
1秒前
Oo。发布了新的文献求助50
1秒前
chinh完成签到,获得积分10
1秒前
举不了一点栗子完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
ding应助tt采纳,获得10
3秒前
看文献搞科研完成签到,获得积分10
4秒前
4秒前
西瓜完成签到 ,获得积分10
4秒前
晨曦发布了新的文献求助10
4秒前
cindy完成签到,获得积分10
5秒前
genova完成签到,获得积分10
5秒前
没有花活儿完成签到,获得积分10
5秒前
111111发布了新的文献求助10
6秒前
sjckn发布了新的文献求助10
6秒前
时肆万完成签到,获得积分10
7秒前
7秒前
7秒前
dbdxyty完成签到,获得积分10
8秒前
shaw发布了新的文献求助20
8秒前
lmj717完成签到,获得积分10
8秒前
紫菜完成签到,获得积分10
10秒前
pophoo完成签到,获得积分10
11秒前
kyt_tt发布了新的文献求助30
11秒前
尘埃之影完成签到,获得积分10
12秒前
12秒前
fengmian完成签到,获得积分10
12秒前
缥缈的初阳完成签到,获得积分10
13秒前
隋承轩发布了新的文献求助10
14秒前
14秒前
纯情的馒头完成签到,获得积分10
14秒前
YELLOW完成签到,获得积分10
15秒前
归筙许完成签到 ,获得积分10
15秒前
15秒前
勤恳书包完成签到,获得积分10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855