已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic estimation of rice grain number based on a convolutional neural network

卷积神经网络 计算机科学 粮食产量 均方误差 人工智能 数学 模式识别(心理学) 农学 统计 生物系统 生物
作者
Deng Ruoling,Long Hao Qi,Weijie Pan,Zhiqi Wang,Dengbin Fu,Xiuli Yang
出处
期刊:Journal of the Optical Society of America [The Optical Society]
卷期号:39 (6): 1034-1034
标识
DOI:10.1364/josaa.459580
摘要

The grain number on the rice panicle, which directly determines the rice yield, is a very important agronomic trait in rice breeding and yield-related research. However, manual counting of grain number per rice panicle is time-consuming, error-prone, and laborious. In this study, a novel prototype, dubbed the "GN-System," was developed for the automatic calculation of grain number per rice panicle based on a deep convolutional neural network. First, a whole panicle grain detection (WPGD) model was established using the Cascade R-CNN method embedded with the feature pyramid network for grain recognition and location. Then, a GN-System integrated with the WPGD model was developed to automatically calculate grain number per rice panicle. The performance of the GN-System was evaluated through estimated stability and accuracy. One hundred twenty-four panicle samples were tested to evaluate the estimated stability of the GN-System. The results showed that the coefficient of determination (R2) was 0.810, the mean absolute percentage error was 8.44%, and the root mean square error was 16.73. Also, another 12 panicle samples were tested to further evaluate the estimated accuracy of the GN-System. The results revealed that the mean accuracy of the GN-System reached 90.6%. The GN-System, which can quickly and accurately predict the grain number per rice panicle, can provide an effective, convenient, and low-cost tool for yield evaluation, crop breeding, and genetic research. It also has great potential in assisting phenotypic research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
1秒前
ddd完成签到,获得积分10
2秒前
无尘发布了新的文献求助10
3秒前
4秒前
yuki发布了新的文献求助10
5秒前
8秒前
8秒前
9秒前
10秒前
星忆眠完成签到,获得积分10
11秒前
文慧发布了新的文献求助10
12秒前
阿赵完成签到,获得积分10
12秒前
14秒前
14秒前
16秒前
明礼A完成签到,获得积分10
16秒前
17秒前
100发布了新的文献求助20
18秒前
19秒前
田様应助认真盼曼采纳,获得10
19秒前
123完成签到,获得积分10
22秒前
ljx发布了新的文献求助10
22秒前
哎呦喂完成签到,获得积分10
23秒前
舒心星星发布了新的文献求助10
25秒前
25秒前
英俊的铭应助shi hui采纳,获得10
25秒前
26秒前
自然的乌龟完成签到 ,获得积分10
27秒前
cyw完成签到,获得积分10
28秒前
爆米花应助D515采纳,获得80
29秒前
Cullen发布了新的文献求助10
29秒前
29秒前
30秒前
接受所有小饼干完成签到 ,获得积分10
30秒前
就是你啦发布了新的文献求助10
31秒前
大家好完成签到 ,获得积分10
32秒前
所所应助xxdn采纳,获得10
34秒前
所所应助聿彧屿采纳,获得10
34秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771695
求助须知:如何正确求助?哪些是违规求助? 5593329
关于积分的说明 15428228
捐赠科研通 4904978
什么是DOI,文献DOI怎么找? 2639147
邀请新用户注册赠送积分活动 1587032
关于科研通互助平台的介绍 1541938