双功能
适体
材料科学
检出限
赭曲霉毒素A
信号(编程语言)
纳米技术
荧光
电化学
电极
计算机科学
化学
色谱法
真菌毒素
食品科学
程序设计语言
催化作用
物理化学
物理
生物
量子力学
生物化学
遗传学
作者
Wenting Li,Xinai Zhang,Xuetao Hu,Yongqiang Shi,Nini Liang,Xiaowei Huang,Xin Wang,Tingting Shen,Xiaobo Zou,Jiyong Shi
标识
DOI:10.1021/acsami.1c22809
摘要
A simple fluorescence and electrochemical dual-channel biosensor based on bifunctional Zr(IV)-based metal-organic framework (Zr-MOF) was proposed to detect Ochratoxin A (OTA). The bifunctional Zr-MOF, with photoluminescence properties and enormous electroactive ligands, was exploited to load OTA-specific aptamers for designing signal probes, greatly simplifying the probe-fabrication process and improving sensing reliability. Upon specific recognition of aptamer toward OTA, the anchored probe was released from the sensing interface into the reaction solution. In this circumstance, the increased amount of the signal probe in reaction solution led to an enhanced fluorescence response, while the decreased amount of the signal probe on the sensing interface resulted in a diminished electrochemical response. According to the dual-channel signal change with increasing OTA concentration, the visual fluorescence strategy was established for intuitive OTA detection, and meanwhile, sensitive electrochemical assay with a detection limit of 0.024 pg/mL was also achieved with the help of one-step electrodeposition as a sensing platform. Moreover, the proposed dual-channel assay has been successfully applied to determine OTA levels in corn samples with rapid response, superior accuracy, and high anti-interference capability, providing a promising method for food safety monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI