亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition

计算机科学 模式识别(心理学) 特征提取 人工智能 肌电图 可穿戴计算机 语音识别 信号(编程语言) 频道(广播) 可用性 熵(时间箭头) 物理医学与康复 医学 人机交互 物理 程序设计语言 嵌入式系统 量子力学 计算机网络
作者
Chunfeng Wei,Hong Wang,Fo Hu,Bin Zhou,Naishi Feng,Yanzheng Lu,Hao Tang,Xiaocong Jia
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:74: 103487-103487 被引量:15
标识
DOI:10.1016/j.bspc.2022.103487
摘要

Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
1分钟前
2分钟前
一二三四发布了新的文献求助10
2分钟前
3分钟前
一二三四完成签到,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得30
4分钟前
5分钟前
金光一闪发布了新的文献求助10
5分钟前
金光一闪完成签到,获得积分10
5分钟前
5分钟前
爱静静应助乔威采纳,获得10
6分钟前
6分钟前
笔墨纸砚完成签到 ,获得积分10
6分钟前
7分钟前
田様应助Alice采纳,获得10
7分钟前
7分钟前
7分钟前
cc发布了新的文献求助10
7分钟前
浮游应助cc采纳,获得10
8分钟前
FashionBoy应助cc采纳,获得10
8分钟前
尼古丁的味道完成签到 ,获得积分10
8分钟前
余呀余完成签到 ,获得积分10
8分钟前
cc完成签到,获得积分10
8分钟前
鳄鱼不做饿梦完成签到,获得积分10
9分钟前
9分钟前
fangjc1024发布了新的文献求助10
9分钟前
9分钟前
Mcling完成签到,获得积分10
9分钟前
fangjc1024完成签到,获得积分10
9分钟前
10分钟前
旁边有堵墙完成签到 ,获得积分20
10分钟前
mc完成签到,获得积分10
10分钟前
10分钟前
orangel发布了新的文献求助10
10分钟前
林林林完成签到,获得积分10
10分钟前
大鼻子的新四岁完成签到,获得积分10
11分钟前
乔威完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302846
求助须知:如何正确求助?哪些是违规求助? 4449882
关于积分的说明 13848728
捐赠科研通 4336199
什么是DOI,文献DOI怎么找? 2380825
邀请新用户注册赠送积分活动 1375769
关于科研通互助平台的介绍 1342143