Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition

计算机科学 模式识别(心理学) 特征提取 人工智能 肌电图 可穿戴计算机 语音识别 信号(编程语言) 频道(广播) 可用性 熵(时间箭头) 物理医学与康复 医学 人机交互 物理 程序设计语言 嵌入式系统 量子力学 计算机网络
作者
Chunfeng Wei,Hong Wang,Fo Hu,Bin Zhou,Naishi Feng,Yanzheng Lu,Hao Tang,Xiaocong Jia
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:74: 103487-103487 被引量:15
标识
DOI:10.1016/j.bspc.2022.103487
摘要

Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxl123完成签到 ,获得积分10
2秒前
无限猕猴桃完成签到,获得积分10
2秒前
研途者完成签到,获得积分10
3秒前
5秒前
儒雅的傲芙完成签到 ,获得积分10
5秒前
ShanTay完成签到,获得积分10
5秒前
yanglian2003完成签到 ,获得积分10
7秒前
Sausage完成签到,获得积分10
8秒前
10秒前
徐多多完成签到,获得积分10
11秒前
11秒前
16秒前
sherman完成签到,获得积分10
16秒前
Nhiii发布了新的文献求助30
17秒前
nanjizi完成签到,获得积分10
18秒前
酷波er应助晨曦采纳,获得10
18秒前
18秒前
义气山水完成签到,获得积分10
18秒前
忧心的白羊完成签到,获得积分10
19秒前
norman完成签到,获得积分20
20秒前
tyt完成签到,获得积分10
20秒前
爆米花应助秋刀鱼的滋味采纳,获得10
20秒前
22秒前
ibigbird完成签到,获得积分10
22秒前
义气山水发布了新的文献求助10
22秒前
Yang发布了新的文献求助10
22秒前
23秒前
24秒前
26秒前
小二郎应助古月衣采纳,获得10
27秒前
小蘑菇应助浮生采纳,获得10
27秒前
zzcres发布了新的文献求助10
28秒前
秋刀鱼的滋味完成签到,获得积分10
29秒前
宋宋完成签到,获得积分10
30秒前
tyy完成签到,获得积分20
30秒前
自觉的秋蝶完成签到,获得积分10
30秒前
afrex发布了新的文献求助10
30秒前
zz完成签到,获得积分20
30秒前
石夜一觞完成签到,获得积分10
30秒前
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262769
求助须知:如何正确求助?哪些是违规求助? 2903373
关于积分的说明 8325014
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398263
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632668