Single-channel surface electromyography signal classification with variational mode decomposition and entropy feature for lower limb movements recognition

计算机科学 模式识别(心理学) 特征提取 人工智能 肌电图 可穿戴计算机 语音识别 信号(编程语言) 频道(广播) 可用性 熵(时间箭头) 物理医学与康复 医学 人机交互 物理 程序设计语言 嵌入式系统 量子力学 计算机网络
作者
Chunfeng Wei,Hong Wang,Fo Hu,Bin Zhou,Naishi Feng,Yanzheng Lu,Hao Tang,Xiaocong Jia
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:74: 103487-103487 被引量:15
标识
DOI:10.1016/j.bspc.2022.103487
摘要

Currently, many researchers tend to use multi-channel surface electromyography (sEMG) signals to improve the accuracy of lower limb movement recognition. However, the collection of multi-channel sEMG signals will reduce the usability of wearable devices for lower limbs based on sEMG signals in amputees, patients with impaired muscle function, and the disabled. How to effectively use single-channel sEMG signals to achieve better recognition performance is a difficult problem to improve the usability of wearable devices based on sEMG signals. In this research, we proposed a precise feature extraction method for single-channel sEMG signals to achieve accurate recognition of lower limb movements. The single-channel sEMG signal was decomposed into multiple variational modal functions (VMF) through variational mode decomposition (VMD), and entropy features were extracted from VMFs to highlight the prominent information of the sEMG signal. Entropy features with statistical differences were selected by the Kruskal-Wallis test. Four lower limb movements were recognized through machine learning. Moreover, the recognition performance exhibited by the proposed method on the sEMG signal of two different muscles was evaluated. The sEMG signals of four lower limb movements from twenty subjects recorded by the wearable sEMG signal sensor were employed to test the proposed method. The experimental results showed that the accuracy of the proposed method for the sEMG signals of two different muscles reached 95.82% and 97.44%. This research concluded that the proposed method is promising to improve the usability of wearable devices based on sEMG signals in amputees, patients with impaired muscle function, and the disabled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CMCM发布了新的文献求助10
1秒前
啦啦康完成签到,获得积分10
1秒前
碧蓝可乐发布了新的文献求助10
3秒前
小羊完成签到 ,获得积分10
3秒前
斯文白白发布了新的文献求助10
5秒前
沈尔云发布了新的文献求助10
5秒前
5秒前
啦啦康发布了新的文献求助10
5秒前
6秒前
YZ发布了新的文献求助30
6秒前
6秒前
6秒前
zyw发布了新的文献求助10
6秒前
迷路以蓝完成签到,获得积分10
7秒前
7秒前
8秒前
陈婷婷发布了新的文献求助10
9秒前
孤标傲世发布了新的文献求助10
9秒前
科目三应助阔达达采纳,获得10
10秒前
10秒前
阳光宅男发布了新的文献求助30
10秒前
bk完成签到,获得积分10
10秒前
天天快乐应助Rachel采纳,获得10
10秒前
ztt发布了新的文献求助10
11秒前
11秒前
brianzk1989完成签到,获得积分0
11秒前
12秒前
12秒前
从容的无极完成签到,获得积分10
13秒前
13秒前
蛋黄苏完成签到,获得积分10
13秒前
现代宛丝发布了新的文献求助10
13秒前
14秒前
14秒前
之逸发布了新的文献求助20
15秒前
瓷穹完成签到,获得积分10
15秒前
羞涩的丹云完成签到,获得积分10
15秒前
千跃完成签到,获得积分10
16秒前
NIKI发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958563
求助须知:如何正确求助?哪些是违规求助? 3504871
关于积分的说明 11120709
捐赠科研通 3236153
什么是DOI,文献DOI怎么找? 1788666
邀请新用户注册赠送积分活动 871279
科研通“疑难数据库(出版商)”最低求助积分说明 802646