亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation Model of Potassium Content in Cotton Leaves Based on Wavelet Decomposition Spectra and Image Combination Features

高光谱成像 数学 偏最小二乘回归 小波 模式识别(心理学) 小波变换 人工智能 主成分分析 生物系统
作者
Qiushuang Yao,Ze Zhang,Xin Lv,Xiangyu Chen,Lulu Ma,Cong Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:13
标识
DOI:10.3389/fpls.2022.920532
摘要

Potassium (K) is one of the most important elements influencing cotton metabolism, quality, and yield. Due to the characteristics of strong fluidity and fast redistribution of the K in plants, it leads to rapid transformation of the K lack or abundance in plant leaves; therefore, rapid and accurate estimation of potassium content in leaves (LKC, %) is a necessary prerequisite to solve the regulation of plant potassium. In this study, we concentrated on the LKC of cotton in different growth stages, an estimation model based on the combined characteristics of wavelet decomposition spectra and image was proposed, and discussed the potential of different combined features in accurate estimation of the LKC. We collected hyperspectral imaging data of 60 main-stem leaves at the budding, flowering, and boll setting stages of cotton, respectively. The original spectrum (R) is decomposed by continuous wavelet transform (CWT). The competitive adaptive reweighted sampling (CARS) and random frog (RF) algorithms combined with partial least squares regression (PLSR) model were used to determine the optimal decomposition scale and characteristic wavelengths at three growth stages. Based on the best “CWT spectra” model, the grayscale image databases were constructed, and the image features were extracted by using color moment and gray level co-occurrence matrix (GLCM). The results showed that the best decomposition scales of the three growth stages were CWT-1, 3, and 9. The best growth stage for estimating LKC in cotton was the boll setting stage, with the feature combination of “CWT-9 spectra + texture,” and its determination coefficients ( R 2 val) and root mean squared error (RMSEval) values were 0.90 and 0.20. Compared with the single R model ( R 2 val = 0.66, RMSEval = 0.34), the R 2 val increased by 0.24. Different from our hypothesis, the combined feature based on “CWT spectra + color + texture” cannot significantly improve the estimation accuracy of the model, it means that the performance of the estimation model established with more feature information is not correspondingly better. Moreover, the texture features contributed more to the improvement of model performance than color features did. These results provide a reference for rapid and non-destructive monitoring of the LKC in cotton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
31秒前
31秒前
黎屿发布了新的文献求助10
35秒前
张根山发布了新的文献求助30
35秒前
52秒前
张根山完成签到,获得积分10
59秒前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
成就的笑南完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助胖橘采纳,获得10
1分钟前
1分钟前
胖橘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
神说要有光完成签到,获得积分10
2分钟前
JIE完成签到 ,获得积分10
2分钟前
2分钟前
xx完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
PRCcc发布了新的文献求助10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
3分钟前
等待寄云完成签到 ,获得积分10
3分钟前
3分钟前
贰鸟应助lyfrey采纳,获得20
3分钟前
nk完成签到 ,获得积分10
3分钟前
盐植物发布了新的文献求助10
4分钟前
盐植物完成签到,获得积分10
4分钟前
4分钟前
lyfrey完成签到,获得积分10
4分钟前
4分钟前
MMM发布了新的文献求助10
4分钟前
33应助兔牙本牙采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015685
关于积分的说明 8871632
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482248
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679951