Depth Map Super Resolution Using Structure-Preserving Guided Filtering

深度图 人工智能 计算机视觉 增采样 计算机科学 滤波器(信号处理) RGB颜色模型 核(代数) 双边滤波器 数学 图像(数学) 组合数学
作者
Ali Asghar Khoddami,Payman Moallem,Mohammad Kazemi
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (13): 13144-13152 被引量:3
标识
DOI:10.1109/jsen.2022.3176669
摘要

Due to the limited resolution of depth maps captured by RGB-D sensors, depth map Super Resolution (SR) techniques have received a lot of attention. Intensity guided depth map SR methods based on bilateral filter or guided image filter are commonly used for depth upsampling. Although promising edge-preserving results have been reported in these methods, texture-copying artifacts caused by structure discrepancy between depth map and associated intensity image cannot be addressed, easily. In this paper we aim to balance the trade-off between preserving structure and suppressing texture defects. Based on this, a structure-preserving guided filter is presented that not only keeps the advantages of aforementioned methods, but also overcomes texture-copying artifacts. Unlike conventional guided filtering-based methods which rely on only one guidance, we emphasize on the use of both intensity and depth information as guidance to alleviate the deficiencies of the existing works. We replace the mean filtering scheme in guided filters with a weighted average strategy, where the weights are described by the local depth kernel depended on the input depth map. This enables our method to considerably reduce texture-copying artifacts while preserving 3D structural details. Visual evaluation of results shows that the algorithm can also avoid halo artifacts near the edges whereas traditional guided filters suffer from it. Quantitative results of comprehensive experiments demonstrate the effectiveness of our approach over prior depth map SR works.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vicky完成签到,获得积分10
刚刚
1秒前
1秒前
swich发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
一一关注了科研通微信公众号
3秒前
帅气难破完成签到 ,获得积分10
3秒前
Akim应助1056720198采纳,获得10
4秒前
潇洒的血茗完成签到 ,获得积分10
4秒前
zz发布了新的文献求助10
4秒前
5秒前
傲娇迎南发布了新的文献求助10
5秒前
未du完成签到,获得积分10
5秒前
5秒前
kendrick677发布了新的文献求助10
5秒前
Daisy完成签到,获得积分10
5秒前
wait完成签到,获得积分10
6秒前
sijiong_han应助lixuanhao采纳,获得10
6秒前
6秒前
无极微光应助Kizuna采纳,获得20
8秒前
wanci应助小鹿采纳,获得10
8秒前
深情安青应助何以故人初采纳,获得10
8秒前
逆光完成签到 ,获得积分10
8秒前
Lucas应助醉熏的绯采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
研友_rLmrgn应助科研通管家采纳,获得10
9秒前
大宝君应助科研通管家采纳,获得20
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243