Intelligent Bearing Fault Diagnosis Based on Multivariate Symmetrized Dot Pattern and LEG Transformer

模式识别(心理学) 变压器 人工智能 计算机科学 振动 特征提取 多元统计 数学 工程类 电压 机器学习 声学 电气工程 物理
作者
Bin Pang,Jiaxun Liang,Han Liu,Jiahao Dong,Zhenli Xu,Xin Zhao
出处
期刊:Machines [MDPI AG]
卷期号:10 (7): 550-550 被引量:11
标识
DOI:10.3390/machines10070550
摘要

Deep learning based on vibration signal image representation has proven to be effective for the intelligent fault diagnosis of bearings. However, previous studies have focused primarily on dealing with single-channel vibration signal processing, which cannot guarantee the integrity of fault feature information. To obtain more abundant fault feature information, this paper proposes a multivariate vibration data image representation method, named the multivariate symmetrized dot pattern (M-SDP), by combining multivariate variational mode decomposition (MVMD) with symmetrized dot pattern (SDP). In M-SDP, the vibration signals of multiple sensors are simultaneously decomposed by MVMD to obtain the dominant subcomponents with physical meanings. Subsequently, the dominant subcomponents are mapped to different angles of the SDP image to generate the M-SDP image. Finally, the parameters of M-SDP are automatically determined based on the normalized cross-correlation coefficient (NCC) to maximize the difference between different bearing states. Moreover, to improve the diagnosis accuracy and model generalization performance, this paper introduces the local-to-global (LG) attention block and locally enhanced positional encoding (LePE) mechanism into a Swin Transformer to propose the LEG Transformer method. Then, a novel intelligent bearing fault diagnosis method based on M-SDP and the LEG Transformer is developed. The proposed method is validated with two experimental datasets and compared with some other methods. The experimental results indicate that the M-SDP method has improved diagnostic accuracy and stability compared with the original SDP, and the proposed LEG Transformer outperforms the typical Swin Transformer in recognition rate and convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H1lb2rt完成签到 ,获得积分10
1秒前
今后应助silentdoubao采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
慕青应助lzy采纳,获得10
5秒前
sopha完成签到,获得积分10
7秒前
坦率灵槐完成签到,获得积分10
8秒前
8秒前
asdfg123发布了新的文献求助10
9秒前
kawai完成签到,获得积分10
9秒前
可爱的函函应助Amanda采纳,获得10
9秒前
10秒前
FashionBoy应助小泽采纳,获得10
12秒前
Hunter发布了新的文献求助10
12秒前
小巧的松思完成签到,获得积分10
13秒前
lieqiang完成签到,获得积分20
14秒前
lzy完成签到,获得积分10
14秒前
14秒前
14秒前
uihyg发布了新的文献求助10
15秒前
hyr发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
17秒前
所所应助hhh采纳,获得10
17秒前
John发布了新的文献求助10
17秒前
18秒前
上官若男应助活泼的如容采纳,获得10
19秒前
19秒前
踏实志泽完成签到,获得积分10
19秒前
19秒前
cassie发布了新的文献求助10
20秒前
20秒前
xinghui应助三十三天采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071