Intelligent Bearing Fault Diagnosis Based on Multivariate Symmetrized Dot Pattern and LEG Transformer

模式识别(心理学) 变压器 人工智能 计算机科学 振动 特征提取 多元统计 数学 工程类 电压 机器学习 声学 物理 电气工程
作者
Bin Pang,Jiaxun Liang,Han Liu,Jiahao Dong,Zhenli Xu,Xin Zhao
出处
期刊:Machines [MDPI AG]
卷期号:10 (7): 550-550 被引量:8
标识
DOI:10.3390/machines10070550
摘要

Deep learning based on vibration signal image representation has proven to be effective for the intelligent fault diagnosis of bearings. However, previous studies have focused primarily on dealing with single-channel vibration signal processing, which cannot guarantee the integrity of fault feature information. To obtain more abundant fault feature information, this paper proposes a multivariate vibration data image representation method, named the multivariate symmetrized dot pattern (M-SDP), by combining multivariate variational mode decomposition (MVMD) with symmetrized dot pattern (SDP). In M-SDP, the vibration signals of multiple sensors are simultaneously decomposed by MVMD to obtain the dominant subcomponents with physical meanings. Subsequently, the dominant subcomponents are mapped to different angles of the SDP image to generate the M-SDP image. Finally, the parameters of M-SDP are automatically determined based on the normalized cross-correlation coefficient (NCC) to maximize the difference between different bearing states. Moreover, to improve the diagnosis accuracy and model generalization performance, this paper introduces the local-to-global (LG) attention block and locally enhanced positional encoding (LePE) mechanism into a Swin Transformer to propose the LEG Transformer method. Then, a novel intelligent bearing fault diagnosis method based on M-SDP and the LEG Transformer is developed. The proposed method is validated with two experimental datasets and compared with some other methods. The experimental results indicate that the M-SDP method has improved diagnostic accuracy and stability compared with the original SDP, and the proposed LEG Transformer outperforms the typical Swin Transformer in recognition rate and convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾念完成签到 ,获得积分10
1秒前
puziju完成签到,获得积分10
3秒前
daomocao完成签到,获得积分20
3秒前
小丸发布了新的文献求助10
3秒前
3秒前
3秒前
可耐的三德完成签到 ,获得积分10
4秒前
旭辰完成签到,获得积分10
4秒前
隐形曼青应助乔心采纳,获得10
4秒前
6秒前
7秒前
8秒前
李健应助陈阳采纳,获得10
8秒前
8秒前
不配.应助daomocao采纳,获得30
8秒前
9秒前
9秒前
魔力兔子发布了新的文献求助10
9秒前
9秒前
9秒前
11秒前
RYL发布了新的文献求助10
12秒前
dfgdfgdfgd发布了新的文献求助10
12秒前
12秒前
13秒前
zww发布了新的文献求助30
14秒前
fev123完成签到,获得积分10
14秒前
大朋友发布了新的文献求助10
16秒前
CodeCraft应助huang采纳,获得10
16秒前
16秒前
pj发布了新的文献求助10
18秒前
乔心完成签到,获得积分10
18秒前
旭辰发布了新的文献求助10
18秒前
19秒前
19秒前
Wang发布了新的文献求助10
19秒前
陈阳发布了新的文献求助10
19秒前
19秒前
22秒前
qqqw完成签到 ,获得积分10
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334372
求助须知:如何正确求助?哪些是违规求助? 2963568
关于积分的说明 8610576
捐赠科研通 2642546
什么是DOI,文献DOI怎么找? 1446799
科研通“疑难数据库(出版商)”最低求助积分说明 670402
邀请新用户注册赠送积分活动 658608