Optimizing spectral and morphological match of nonfullerene acceptors toward efficient indoor organic photovoltaics with enhanced light source adaptability

材料科学 带隙 光伏 吸收(声学) 有机太阳能电池 光电子学 烷基 侧链 吸收光谱法 光伏系统 光学 复合材料 有机化学 聚合物 化学 生态学 生物 物理
作者
Siwei Luo,Fujin Bai,Jianquan Zhang,Heng Zhao,Indunil Angunawela,Xinhui Zou,Xiaojun Li,Zhenghui Luo,Kui Feng,Yu Han,Kam Sing Wong,Harald Ade,Wei Ma,He Yan
出处
期刊:Nano Energy [Elsevier]
卷期号:98: 107281-107281 被引量:11
标识
DOI:10.1016/j.nanoen.2022.107281
摘要

High-performance indoor organic photovoltaics (IOPV) require large-bandgap material systems to absorb visible light efficiently and reduce energy loss. However, state-of-the-art non-fullerene acceptors (NFAs) have absorptions in the near-infrared region and are thus not suitable for IOPV applications. Herein, we report a series of large-bandgap (>1.70 eV) NFAs named FCC-Cl-C8, FCC-Cl-4Ph and FCC-Cl-6Ph by modifying the alkyl side chains with alkylphenyl chains partially or completely. Results show that the bulky alkylphenyl side chains can finely tune the absorption properties of the NFAs and also affect their morphological properties. Interestingly, the best-performing NFA is the one (named FCC-Cl-4Ph) with partial alkyl and alkylphenyl substitutions, which blue-shift the absorption of the NFAs while minimizing the negative morphological effect of the bulky alkylphenyl chains. As a result, FCC-Cl-4Ph can achieve excellent indoor efficiencies over 29% under a 3000 K LED lamp at 1000 lux and show better solution processability over FCC-Cl-C8. More importantly, FCC-Cl-4Ph can maintain high indoor performance (29.7–26.8% at 1000 lux) under a wide range of indoor lighting spectra (2600, 3000, 4000, and 6500 K LED lamps), which should be due to the blue-shifted spectra of FCC-Cl-4Ph and better matching with various indoor conditions. This work reveals an interesting structure-property relationship and offers useful strategies for the further design of NFAs toward efficient IOPV devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧敏发布了新的文献求助10
刚刚
CipherSage应助邹万恶采纳,获得10
刚刚
小蘑菇应助平常的蜜蜂采纳,获得10
刚刚
刚刚
余南发布了新的文献求助10
1秒前
鹤鸣完成签到 ,获得积分10
1秒前
星辰大海应助虚幻的水之采纳,获得10
1秒前
1秒前
1秒前
科目三应助龙笙采纳,获得30
1秒前
藤大阳发布了新的文献求助10
2秒前
rortis应助哭泣的采波采纳,获得10
3秒前
阿轩完成签到,获得积分10
3秒前
田様应助Tumumu采纳,获得10
4秒前
wang完成签到,获得积分10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
王木木发布了新的文献求助10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
一然完成签到,获得积分10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
静心安逸发布了新的文献求助10
9秒前
负责的乐巧完成签到 ,获得积分10
10秒前
慧敏完成签到,获得积分10
10秒前
棒棒发布了新的文献求助10
11秒前
HH完成签到,获得积分10
12秒前
12秒前
小赵发布了新的文献求助10
13秒前
研友_ngX12Z完成签到,获得积分10
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310257
求助须知:如何正确求助?哪些是违规求助? 2943243
关于积分的说明 8513288
捐赠科研通 2618458
什么是DOI,文献DOI怎么找? 1431082
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649542