Nomograms based on preoperative multimodal ultrasound of papillary thyroid carcinoma for predicting central lymph node metastasis

医学 列线图 超声波 放射科 神经组阅片室 甲状腺癌 介入放射学 甲状腺 肿瘤科 内科学 神经学 精神科
作者
Quan Dai,Dongmei Liu,Tao Yi,Chao Ding,Shouqiang Li,Chen Zhao,Zhuo Wang,Yangyang Tao,Jiawei Tian,Xiaoping Leng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (7): 4596-4608 被引量:15
标识
DOI:10.1007/s00330-022-08565-1
摘要

To establish a nomogram for predicting central lymph node metastasis (CLNM) based on the preoperative clinical and multimodal ultrasound (US) features of papillary thyroid carcinoma (PTC) and cervical LNs.Overall, 822 patients with PTC were included in this retrospective study. A thyroid tumor ultrasound model (TTUM) and thyroid tumor and cervical LN ultrasound model (TTCLNUM) were constructed as nomograms to predict the CLNM risk. Areas under the curve (AUCs) evaluated model performance. Calibration and decision curves were applied to assess the accuracy and clinical utility.For the TTUM training and test sets, the AUCs were 0.786 and 0.789 and bias-corrected AUCs were 0.786 and 0.831, respectively. For the TTCLNUM training and test sets, the AUCs were 0.806 and 0.804 and bias-corrected AUCs were 0.807 and 0.827, respectively. Calibration and decision curves for the TTCLNUM nomogram exhibited higher accuracy and clinical practicability. The AUCs were 0.746 and 0.719 and specificities were 0.942 and 0.905 for the training and test sets, respectively, when the US tumor size was ≤ 8.45 mm, while the AUCs were 0.737 and 0.824 and sensitivity were 0.905 and 0.880, respectively, when the US tumor size was > 8.45 mm.The TTCLNUM nomogram exhibited better predictive performance, especially for the CLNM risk of different PTC tumor sizes. Thus, it serves as a useful clinical tool to supply valuable information for active surveillance and treatment decisions.• Our preoperative noninvasive and intuitive prediction method can improve the accuracy of central lymph node metastasis (CLNM) risk assessment and guide clinical treatment in line with current trends toward personalized treatments. • Preoperative clinical and multimodal ultrasound features of primary papillary thyroid carcinoma (PTC) tumors and cervical LNs were directly used to build an accurate and easy-to-use nomogram for predicting CLNM. • The thyroid tumor and cervical lymph node ultrasound model exhibited better performance for predicting the CLNM of different PTC tumor sizes. It may serve as a useful clinical tool to provide valuable information for active surveillance and treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋泽祯发布了新的文献求助10
1秒前
科研通AI5应助xsy2000采纳,获得10
2秒前
帅气的宽发布了新的文献求助10
2秒前
6秒前
喵呜完成签到,获得积分10
6秒前
7秒前
华仔应助追风少年采纳,获得20
8秒前
sw123完成签到 ,获得积分10
9秒前
冷傲书萱应助李李李李李采纳,获得10
9秒前
paltahun发布了新的文献求助10
10秒前
12秒前
蒋泽祯完成签到,获得积分10
13秒前
14秒前
15秒前
米缸发布了新的文献求助10
17秒前
zxzxzx完成签到,获得积分10
18秒前
19秒前
cheng发布了新的文献求助10
20秒前
浮游应助晴空万里采纳,获得10
20秒前
25秒前
agan发布了新的文献求助10
26秒前
29秒前
zhangyueyue完成签到,获得积分10
30秒前
Hello应助Yale采纳,获得10
32秒前
34秒前
浮游应助贝酷酱采纳,获得10
35秒前
tu123发布了新的文献求助10
40秒前
41秒前
傅剑寒发布了新的文献求助10
41秒前
共享精神应助执着的忆雪采纳,获得10
42秒前
爆米花应助jiayi0114采纳,获得10
42秒前
LZY完成签到,获得积分10
42秒前
zzzzzzzzzj完成签到,获得积分10
44秒前
li完成签到,获得积分10
44秒前
追风少年完成签到,获得积分10
44秒前
三水发布了新的文献求助10
45秒前
谨慎晓灵完成签到 ,获得积分20
46秒前
chen完成签到,获得积分10
46秒前
47秒前
今后应助小水滴采纳,获得10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914824
求助须知:如何正确求助?哪些是违规求助? 4189010
关于积分的说明 13009694
捐赠科研通 3957961
什么是DOI,文献DOI怎么找? 2170035
邀请新用户注册赠送积分活动 1188261
关于科研通互助平台的介绍 1095917