亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gaussian process regression based remaining fatigue life prediction for metallic materials under two-step loading

克里金 可靠性(半导体) 标准差 平均绝对百分比误差 均方误差 回归 残余物 高斯分布 高斯过程 统计 计算机科学 工程类 数学 算法 量子力学 物理 功率(物理)
作者
Jingjing Gao,Cunjun Wang,Zili Xu,Jun Wang,Yan Song,Zhen Wang
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:158: 106730-106730 被引量:34
标识
DOI:10.1016/j.ijfatigue.2022.106730
摘要

Remaining fatigue life prediction is vital for engineering structures to ensure safety and reliability. It can be more challenging when the structures suffer variable amplitude loadings because of the complex, non-uniform of the fatigue damage accumulation and inherent noise, uncertainty in the data. To further tackle the problem, the Gaussian process regression (GPR) is introduced, which can simultaneously estimate the output value and quantify the associated uncertainty. Therefore, a GPR-based remaining fatigue life prediction method is proposed to predict the remaining fatigue life for metallic materials under two-step loading in this paper. The proposed method is comprehensively evaluated on the dataset containing 12 materials, 328 samples in total. The proposed method achieves the lowest mean square error (MSE), mean absolute percentage error (MAPE), residual standard deviation (RSD) values and the highest correlation coefficient (CC) values among the six machine learning methods and the two model-driven methods. Those results indicate that the proposed method can achieve greater accuracy and reliability in remaining life prediction under two-step loading, which illustrate the effectiveness of the proposed method as a data-driven method in the field of remaining life prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖猪发布了新的文献求助10
2秒前
20秒前
飞快的孱发布了新的文献求助10
26秒前
32秒前
小二郎应助幽默安珊采纳,获得10
33秒前
无名发布了新的文献求助10
35秒前
36秒前
42秒前
魁梧的鲂发布了新的文献求助10
43秒前
幽默安珊发布了新的文献求助10
48秒前
幽默安珊完成签到,获得积分20
58秒前
Owen应助jichenzhang2024采纳,获得10
1分钟前
1分钟前
西红柿有饭吃吗完成签到,获得积分10
1分钟前
研友_VZG7GZ应助胖胖猪采纳,获得10
1分钟前
1分钟前
1分钟前
muhum完成签到 ,获得积分10
1分钟前
胖胖猪发布了新的文献求助10
1分钟前
1分钟前
99253761发布了新的文献求助10
1分钟前
魁梧的鲂完成签到,获得积分10
1分钟前
香蕉觅云应助聪明熊猫采纳,获得10
2分钟前
2分钟前
飞快的孱发布了新的文献求助10
2分钟前
无花果应助橘子味汽水采纳,获得10
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
初晴完成签到 ,获得积分10
2分钟前
3分钟前
xiaopu完成签到,获得积分10
3分钟前
AWESOME Ling完成签到 ,获得积分10
3分钟前
4分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
Daniel发布了新的文献求助200
4分钟前
丘比特应助呜呼采纳,获得10
5分钟前
5分钟前
呜呼发布了新的文献求助10
5分钟前
hahahan完成签到 ,获得积分10
5分钟前
呜呼完成签到,获得积分20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626119
求助须知:如何正确求助?哪些是违规求助? 4025136
关于积分的说明 12458423
捐赠科研通 3710373
什么是DOI,文献DOI怎么找? 2046578
邀请新用户注册赠送积分活动 1078526
科研通“疑难数据库(出版商)”最低求助积分说明 960987