Siamese decoupling network for speaker-independent lipreading

计算机科学 语音识别 说话人识别 说话人日记 身份(音乐) 人工智能 特征(语言学) 编码器 特征向量 模式识别(心理学) 语言学 哲学 物理 声学 操作系统
作者
Longbin Lu,Xuebin Xu,Jun Fu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (03) 被引量:1
标识
DOI:10.1117/1.jei.31.3.033045
摘要

Lipreading aims to decode the speech content from a moving mouth. It is a very challenging task because lip appearance variations and speech contents are coupled together in the subtle movements of lip region. Especially in the speaker-independent recognition scenario, training and testing data are totally different in distribution due to the diverse speaker identities, making the learned model generalize poorly in the testing task. We propose a Siamese decoupling lipreading network (SDLipNet) to address this problem. Specially, we exploit an encoder–decoder framework to establish a collaborative representation of speaker identities and speech contents, and utilize the identity-specific information to regularize the content feature space. The identity features are derived from a Siamese identity encoder trained with paired visual speech data from different speakers. In addition, we align the content representation with a prior Gaussian distribution by imposing a Kullback–Leibler divergence constraint between the two outputs of the Siamese content encoder. In this way, the learned content feature space is supposed to be universal to the target speaker domain. Extensive experiments on two lipreading benchmarks demonstrate that our proposed SDLipNet can achieve better performance in the speaker-independent recognition task compared with the state-of-the-art lipreading methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兔子不吃胡萝卜完成签到 ,获得积分10
3秒前
7秒前
8秒前
科研通AI6.2应助老A采纳,获得10
8秒前
11秒前
鲜于诗霜发布了新的文献求助10
12秒前
czx发布了新的文献求助10
12秒前
13秒前
倚楼听风雨完成签到 ,获得积分10
13秒前
13秒前
14秒前
wuyueyi完成签到 ,获得积分10
14秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
lewu完成签到,获得积分10
17秒前
南枳发布了新的文献求助10
17秒前
Wind应助科研通管家采纳,获得10
17秒前
自觉翠安应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
577发布了新的文献求助10
17秒前
25486发布了新的文献求助10
19秒前
小蘑菇应助忆修采纳,获得10
19秒前
stoneff612发布了新的文献求助10
19秒前
XS_QI发布了新的文献求助10
20秒前
积极的罡完成签到 ,获得积分10
21秒前
张鹏飞完成签到,获得积分10
22秒前
laruijoint完成签到,获得积分10
26秒前
Owen应助XS_QI采纳,获得10
30秒前
stoneff612完成签到,获得积分10
31秒前
25486完成签到,获得积分10
33秒前
洁净晓夏完成签到 ,获得积分10
34秒前
丁丁完成签到 ,获得积分10
38秒前
45秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847541
求助须知:如何正确求助?哪些是违规求助? 6227303
关于积分的说明 15620489
捐赠科研通 4964224
什么是DOI,文献DOI怎么找? 2676489
邀请新用户注册赠送积分活动 1621042
关于科研通互助平台的介绍 1576969