清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秋夜临完成签到,获得积分0
7秒前
12秒前
Liumingyu发布了新的文献求助10
17秒前
千帆破浪完成签到 ,获得积分10
24秒前
shhoing应助羞涩的妙菱采纳,获得10
28秒前
33秒前
WGX完成签到 ,获得积分10
39秒前
master-f完成签到 ,获得积分10
41秒前
羞涩的妙菱完成签到,获得积分10
51秒前
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
小丁发布了新的文献求助50
1分钟前
yang923完成签到 ,获得积分10
1分钟前
shhoing应助羞涩的妙菱采纳,获得10
1分钟前
Anlocia完成签到 ,获得积分10
1分钟前
1分钟前
ldy完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
cxy完成签到 ,获得积分10
2分钟前
JamesPei应助Liumingyu采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Liumingyu发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
3分钟前
NexusExplorer应助枯藤老柳树采纳,获得10
3分钟前
田様应助神秘猎牛人采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Jerry发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539063
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566709
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452982