重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到,获得积分10
2秒前
叶叶发布了新的文献求助10
3秒前
爱吃烤肉的兔子完成签到,获得积分10
4秒前
4秒前
徐月亮完成签到,获得积分10
4秒前
李爱国应助迷路的指甲油采纳,获得100
5秒前
6秒前
6秒前
大模型应助风清扬采纳,获得10
6秒前
bkagyin应助风清扬采纳,获得10
6秒前
王哈哈发布了新的文献求助40
6秒前
7秒前
徐月亮发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助oldyang采纳,获得10
12秒前
鸡蛋清abc发布了新的文献求助10
12秒前
威武鸽子完成签到,获得积分10
12秒前
白忻完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
小涵发布了新的文献求助10
14秒前
QY完成签到,获得积分10
15秒前
搜集达人应助远山等故归采纳,获得10
16秒前
sajnk发布了新的文献求助10
16秒前
今后应助王成采纳,获得10
16秒前
科目三应助鸡蛋清abc采纳,获得10
17秒前
yu发布了新的文献求助10
17秒前
18秒前
19秒前
科研通AI6应助叶叶采纳,获得10
19秒前
19秒前
19秒前
可爱的函函应助超人无敌采纳,获得10
20秒前
猫小树完成签到 ,获得积分10
20秒前
丘比特应助王哈哈采纳,获得20
20秒前
时2完成签到,获得积分10
20秒前
21秒前
GSH发布了新的文献求助10
21秒前
4AF完成签到,获得积分10
22秒前
22秒前
oldyang发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571442
关于积分的说明 14330353
捐赠科研通 4498015
什么是DOI,文献DOI怎么找? 2464270
邀请新用户注册赠送积分活动 1453016
关于科研通互助平台的介绍 1427725