Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Carsen完成签到,获得积分10
刚刚
SciGPT应助Romine采纳,获得10
刚刚
隐形曼青应助謓言采纳,获得10
刚刚
情殇发布了新的文献求助10
1秒前
Hyunstar完成签到,获得积分10
1秒前
郜连虎发布了新的文献求助10
2秒前
2秒前
赵小瑜完成签到,获得积分10
2秒前
难过盼海发布了新的文献求助10
3秒前
3秒前
Ruan_zzz完成签到 ,获得积分10
4秒前
落寞依珊发布了新的文献求助10
4秒前
ghjyufh发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
希望天下0贩的0应助Amelia采纳,获得10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
福尔摩环完成签到,获得积分10
8秒前
8秒前
JasonYang完成签到,获得积分10
9秒前
9秒前
辛禹完成签到,获得积分10
10秒前
10秒前
Shadow发布了新的文献求助10
10秒前
10秒前
11秒前
Wzx完成签到,获得积分10
11秒前
11秒前
科研误我完成签到 ,获得积分10
11秒前
998685完成签到,获得积分10
11秒前
11秒前
郜连虎完成签到,获得积分10
11秒前
aaa完成签到 ,获得积分10
12秒前
充电宝应助粗犷的三德采纳,获得10
12秒前
情怀应助boging采纳,获得10
12秒前
Owen应助小卡拉米采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416