Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Jello采纳,获得10
1秒前
科研通AI2S应助cxm666采纳,获得10
1秒前
张小良完成签到 ,获得积分10
1秒前
1秒前
NEO发布了新的文献求助10
2秒前
3秒前
4秒前
5秒前
研友_VZG7GZ应助柔弱的南烟采纳,获得10
5秒前
5秒前
yi发布了新的文献求助10
5秒前
JamesPei应助青岚采纳,获得10
6秒前
Veronica Mew完成签到 ,获得积分10
6秒前
雪白的面包完成签到 ,获得积分10
6秒前
晚风发布了新的文献求助10
7秒前
海棠依旧发布了新的文献求助10
8秒前
8秒前
情怀应助diraczh采纳,获得10
8秒前
9秒前
10秒前
abbyi发布了新的文献求助10
10秒前
唐僧肉臊子面完成签到,获得积分10
11秒前
张烤明完成签到,获得积分10
12秒前
zzn完成签到,获得积分10
13秒前
Jasper应助如意的灵枫采纳,获得10
13秒前
桐桐应助琛哥物理采纳,获得10
13秒前
DDDD源发布了新的文献求助10
13秒前
14秒前
共享精神应助俭朴的雁芙采纳,获得10
14秒前
情怀应助美满朝雪采纳,获得10
14秒前
sun完成签到,获得积分10
14秒前
15秒前
海棠依旧完成签到,获得积分10
15秒前
15秒前
幻星岛发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
SCI_Dark工人完成签到 ,获得积分10
19秒前
嘎嘎板正的大魔王完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465119
求助须知:如何正确求助?哪些是违规求助? 3058354
关于积分的说明 9061144
捐赠科研通 2748668
什么是DOI,文献DOI怎么找? 1508010
科研通“疑难数据库(出版商)”最低求助积分说明 696770
邀请新用户注册赠送积分活动 696451