Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助明天采纳,获得10
刚刚
王小鱼发布了新的文献求助10
刚刚
1234发布了新的文献求助10
刚刚
刚刚
AidenZhang完成签到,获得积分10
1秒前
菜虫虫发布了新的文献求助10
1秒前
1秒前
Li发布了新的文献求助10
2秒前
jwj完成签到,获得积分10
3秒前
3秒前
丘比特应助jing采纳,获得10
3秒前
冯xiaoni发布了新的文献求助10
3秒前
吴妮妮发布了新的文献求助10
4秒前
愉快若烟发布了新的文献求助10
5秒前
浮游应助tyk采纳,获得10
5秒前
芋泥发布了新的文献求助10
6秒前
6秒前
松山文女士完成签到,获得积分10
6秒前
Aggie发布了新的文献求助200
7秒前
7秒前
11111完成签到,获得积分10
7秒前
nana发布了新的文献求助10
8秒前
可乐完成签到 ,获得积分10
9秒前
传奇3应助研友_赖冰凡采纳,获得10
10秒前
冯xiaoni完成签到,获得积分10
10秒前
小马甲应助赵珺采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
淡然发布了新的文献求助10
11秒前
12秒前
xiaofeiyan发布了新的文献求助10
12秒前
1234完成签到,获得积分10
13秒前
鹅鹅鹅发布了新的文献求助10
14秒前
上官若男应助愉快若烟采纳,获得10
14秒前
温柔柜子应助微笑的语芙采纳,获得10
14秒前
菠萝蜜完成签到,获得积分10
14秒前
CipherSage应助芋泥采纳,获得10
15秒前
lk发布了新的文献求助10
15秒前
Akazugi完成签到,获得积分10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142377
求助须知:如何正确求助?哪些是违规求助? 4340700
关于积分的说明 13518033
捐赠科研通 4180609
什么是DOI,文献DOI怎么找? 2292524
邀请新用户注册赠送积分活动 1293189
关于科研通互助平台的介绍 1235689