Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助wanhe采纳,获得10
2秒前
赘婿应助Solitary采纳,获得10
2秒前
香蕉诗蕊应助zj采纳,获得10
2秒前
万能图书馆应助张nmky采纳,获得10
3秒前
3秒前
DXL发布了新的文献求助10
4秒前
红红发布了新的文献求助10
4秒前
5秒前
哇owao完成签到,获得积分10
6秒前
6秒前
好吗好的发布了新的文献求助10
6秒前
天菱完成签到,获得积分10
8秒前
梅梅也完成签到,获得积分10
8秒前
朴实雪兰发布了新的文献求助10
8秒前
x111发布了新的文献求助10
8秒前
Lucas应助缓慢的含双采纳,获得10
9秒前
旱田蜗牛发布了新的文献求助10
10秒前
wanci应助选波采纳,获得10
11秒前
充电宝应助秀丽的平彤采纳,获得10
11秒前
科研通AI2S应助77777采纳,获得10
12秒前
12秒前
Rossie完成签到,获得积分10
12秒前
领导范儿应助x111采纳,获得10
13秒前
梅梅也发布了新的文献求助10
13秒前
lius应助好吗好的采纳,获得10
14秒前
14秒前
wuyanyixie完成签到 ,获得积分20
15秒前
浮游应助idemipere采纳,获得10
15秒前
xinmi完成签到,获得积分10
15秒前
17秒前
17秒前
19秒前
义气山柳完成签到,获得积分10
19秒前
jiahhhao发布了新的文献求助10
20秒前
20秒前
21秒前
Klaus发布了新的文献求助10
21秒前
义气山柳发布了新的文献求助10
21秒前
21秒前
思源应助kukaa采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413