Biomarkers identification for Schizophrenia via VAE and GSDAE-based data augmentation

计算机科学 人工智能 模式识别(心理学) 特征选择 自编码 生成模型 鉴定(生物学) 正规化(语言学) 推论 机器学习 数据挖掘 深度学习 生成语法 植物 生物
作者
Qi Huang,Chen Qiao,Kaili Jing,Xu Zhu,Kai Ren
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:146: 105603-105603 被引量:12
标识
DOI:10.1016/j.compbiomed.2022.105603
摘要

Deep learning has made great progress in analyzing MRI data, while the MRI data with high dimensional but small sample size (HDSSS) brings many limitations to biomarkers identification. Few-shot learning has been proposed to solve such problems and data augmentation is a typical method of it. The variational auto-encoder (VAE) is a generative method based on variational Bayesian inference that is used for data augmentation. Graph regularized sparse deep autoencoder (GSDAE) can reconstruct sparse samples and keep the manifold structure of data which will facilitate biomarkers selection greatly. To generate better HDSSS data for biomarkers identification, a data augmentation method based on VAE and GSDAE is proposed in this paper, termed GS-VDAE. Instead of utilizing the final products of GSDAE, our proposed model embeds the generation procedure into GSDAE for augmentation. In this way, the augmented samples will be rooted in the significant features extracted from the original samples, which can ensure the newly formed samples contain the most significant characteristics of the original samples. The classification accuracy of the samples generated directly from VAE is 0.74, while the classification accuracy of the samples generated from GS-VDAE is 0.84, which proves the validity of our model. Additionally, a regression feature selection method with truncated nuclear norm regularization is chosen for biomarkers selection. The biomarkers selection results of schizophrenia data reveal that the augmented samples obtained by our proposed method can get higher classification accuracy with less ranked features compared with original samples, which proves the validation of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TRY发布了新的文献求助10
刚刚
田様应助悠悠采纳,获得10
刚刚
刚刚
变化球完成签到,获得积分10
1秒前
Xianhe完成签到,获得积分10
1秒前
无花果应助一人之下采纳,获得10
2秒前
失眠双双发布了新的文献求助10
3秒前
3秒前
小石头发布了新的文献求助10
3秒前
氵漏漏发布了新的文献求助10
4秒前
4秒前
4秒前
丘比特应助醉月采纳,获得10
4秒前
淡淡土豆应助sunly采纳,获得10
5秒前
5秒前
lx完成签到,获得积分10
5秒前
深情安青应助zy采纳,获得10
5秒前
科研通AI6应助Fighter采纳,获得10
5秒前
Jasper应助hbkyt采纳,获得10
5秒前
zzioo发布了新的文献求助10
6秒前
6秒前
jeitt完成签到,获得积分10
7秒前
7秒前
王羊补牢完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
More发布了新的文献求助10
8秒前
icypz628发布了新的文献求助10
9秒前
0717号执行官完成签到,获得积分10
9秒前
波西米亚完成签到,获得积分10
9秒前
无花果应助张志迪采纳,获得10
9秒前
9秒前
绵糖悠悠羊完成签到,获得积分10
10秒前
10秒前
10秒前
zheng-homes发布了新的文献求助10
10秒前
王太祖完成签到,获得积分10
12秒前
852应助fxy采纳,获得10
12秒前
万能图书馆应助yeahCZY采纳,获得10
12秒前
kidney发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525453
求助须知:如何正确求助?哪些是违规求助? 4615640
关于积分的说明 14549575
捐赠科研通 4553716
什么是DOI,文献DOI怎么找? 2495470
邀请新用户注册赠送积分活动 1476017
关于科研通互助平台的介绍 1447758